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ABSTRACT

Heat acclimation is known to increase exercise economy. Previous examinations
suggest heat acclimation may preserve performance at altitude. This study examined the
effect of using heat acclimation as a cross environmental stressor to improve exercise
economy and efficiency during acute exercise at altitude. Eight trained males (VOzpeax:
53.3 £ 6.7 ml/kg/min) performed maximal exercise tests, submaximal exercise bouts, and
heat tolerance testing in a temperate environment (21°C) at 1600 m and 4350 m before
and after a 10-day heat acclimation (40°C and 20% RH) on a cycle ergometer (~43%
peak power). To investigate heat stress mechanisms, C2C12 myocytes were heat stressed
for 24 hours (40°C, 5% CO,). Heat acclimation did not alter VOypeax at 1600 m (53.3 +
6.7 vs. 53.7 = 3.7 ml/kg/min, p > 0.05) or 4350 m (45.3 + 4.1 versus 45.9 + 3.4
ml/kg/min, p > 0.05). Heat acclimation increased exercise economy by 1.6% and 2% in
the low intensity and high intensity exercise, respectively at 1600 m with only a 0.48%
increase at 4350 m. In the cell study, heat stress significantly reduced UCP3 expression,
reduced mitochondrial uncoupling (71.1% *1.2%) and suppressed basal and peak
oxidative metabolism (75.5% + 4.9% and 64.4% + 5.9%, respectively) compared to
control. Heat stress also significantly increased PGC-1a, NRF1 and TFAM leading to
increased mitochondrial content. These data demonstrate that while heat stress reduces
UCP3 expression, thereby reducing uncoupling and leading to enhanced mitochondrial
efficiency, these adaptations are not observed in the whole body. At this time, I are
unable definitively promote the use of heat acclimation as a cross environmental stressor

for acute exercise at altitude.
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CHAPTER 1

I would like to acknowledge my co-investigator of this dual dissertation, Ailish
White. | want to thank you for your assistance in subject recruitment, scheduling, and
data collection throughout this process. | would not have been able to complete this
project without your help. Thank you.
Introduction

The use of altitude training is a common practice for athletes to improve sea-level
exercise performance (17, 36) and/or improve exercise capacity at altitude (4, 9). With
increasing altitude (or decrease in barometric pressure), there is a decrease in partial
pressure of inspired oxygen (P10O,) leading to hypoxia. The reduction in barometric
pressure is accompanied by pressure gradient for gas diffusion which leads to a decrease
in oxygen transport, that can reduce maximal oxygen consumption (VOzmax) (37) and
submaximal oxygen consumption at altitude. Maximal oxygen consumption can be
reduced by as much as 10-12% at >2200m (5, 35). Since VOmax is reduced at altitude,
exercise is performed at a higher percentage of their VO,max (reduced exercise economy)
compared to sea level. Even after prolonged (14-18 days) exposure to 4300m, there are
little increases or decreases in VOzmax (39, 40). To maintain homeostasis, humans must
adapt, allowing for increased tolerance to the environment. These responses to exposure
to high altitude include an increase in ventilatory rate that leads to improvement in
oxygen saturation (Sa0,) (14). In addition there is a right-ward shift in the oxygen-
hemoglobin disassociation curve (38), increasing unloading of oxygen in skeletal muscle
tissue. Long-term acclimatization leads to improvements in pulmonary gas exchange,

which increases oxygen transport (3), and hypoxia leads to polycythemia (15, 18). These
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changes, in turn, lead to an enhanced oxygen delivery and carrying capacity (18) which
aides in exercise capacity at high altitude.

In sea-level natives making altitude sojourns, submaximal oxygen consumption
after 12 to 18 days has not been reported to increase (1, 22). Since oxygen transport has
been suggested to be a limiting factor to exercise capacity at high altitude, adaptations
leading to improved economy may be beneficial. Recently, Latshang et al. (16) suggested
that since maximal exercise capacity is not changed after acclimization, the reports of
improved tolerance during exercise in mountaineers might be attributed to increased
efficiency of muscular work at altitude. In this study Latshang et al. (16) reported that in
34 experienced mountaineers, submaximal VO, was significantly lower during exercise
at 5533 m (Mt. Muztagh Ata, Western China) at intensities of 50 and 75% peak power
output (PPO) on a cycle ergometer (1.35 + 0.33 versus 1.18 + 0.41L/min, p = 0.017 at
50% PPO and 1.75 £ 0.45 versus 1.61 + 0.47L/min, p = 0.027 at 75% PPO) from day 6-7
compared to day 11. They also reported that the change in perceived effort during
exercise (visual analog scale ranging from “not exhausting at all” to “extremely
exhausting” was related to submaximal exercise economy (beta 0.52, p = 0.04). The
authors attributed the differences in their findings compared to other studies to a larger
sample size. One difference that was not discussed was subject population. Previous
studies used subjects described as sea-level natives (1, 22), while Latshang et al. (16)
recruited subjects described as experienced mountaineers. Perhaps, prolonged altitude
exposure over a greater total amount of time spent at altitude explains the reduced
submaximal VO, during exercise in these particular subjects. Indeed, researchers have

reported that high-altitude adapted natives have improved economy (23) and muscle

www.manaraa.com



efficiency (24) during exercise at altitude when compared to low- and moderate-land
natives, which may allow them to tolerate a higher exercise capacity even with lower
VOomax- If the amount of oxygen for a given submaximal workload is reduced at altitude,
this would indicate that the exercise intensity can be maintained using less oxygen. Since
these factors can affect exercise performance (7, 12), understanding its role in exercise
capacity at altitude is warranted.

The traditional method of acclimatization to high altitude involves traveling to
high altitude terrain, whereas more contemporary methods involve acute exposure to
simulated hypobaric or normobaric hypoxia. However, the ease and accessibility of
traveling to high altitude for acclimatization purposes are limited to most individuals.
Further, portable commercial systems used to simulate altitude are expensive, making
them impractical. There are a growing number of people visiting high altitude (defined as
~2200 to 2500 m (25)) areas for recreation and work, and in addition there are many
endurance sporting events that take place at high altitude locations. For individuals
unable to acclimatize/acclimate using traditional methods, alternate training methods are
needed to improve acute exercise capacity at altitude. This has led us in search of other
training modalities that could be used to maintain or even enhance exercise capacity at
altitude without having access to specialized equipment or to make altitude sojourns.

Recently, Heled and colleagues (10) reported that after 12 days of heat
acclimation (40°C temperature and 40% relative humidity) at sea-level, SaO, during
walking exercise (7 km/h) at FIO, of 15.6% FIO; (simulated altitude of 2430 m) was
significantly improved (86.5 = 2% versus 88 £ 2%) from pre-heat acclimation to post-

heat acclimation, respectively, which indicates improved oxygen transport. Further, they
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speculated that reductions in metabolism from heat acclimation (HA) may contribute to
better altitude tolerance. Unfortunately, the authors did not expand on this finding, nor
did they measure submaximal VO,. Hiestand et al. (11) investigated the responses to
anoxia (extreme form of hypoxia) after heat acclimation in mice. Researchers reported
that the longer mice were exposed to heat the better they were at tolerating anoxia (42.1 +
3.5,48.2 £5.9, and 54.3 £ 4.2 sec, respectively for no heat, 10 days and 14 days of heat
exposure). Both Hiestand et al. and Heled et al. suggested that improved muscle economy
due to HA may affect exercise at altitude. Given the findings of these two studies (10,
11), I hypothesize that heat acclimation at 1600 m might enhance exercise submaximal
economy and efficiency at altitude.

Previous research provides evidence to support that HA improves submaximal
VO, during exercise in a thermoneutral environment(13, 29). Jooste and Strydom (13)
had subjects perform a progressively increasing step exercise (from 35 to 70W) during
HA for four hours per day over a seven day protocol at 31°C. Researchers reported that
submaximal VO, was significantly lower after 90 min from pre to post HA of a four-hour
exercise bout on a treadmill at 45% VO,ma at thermoneutral environment (20-22°C).
Since physical fitness was not different from pre to post HA, the authors concluded that
the heat exposure led to reduced VO, for a given workload compared to pre-HA.
Similarly, in a review of three HA studies, Sawka et al. (29) reported that 10 days of HA
at varying heat exposures (40-49°C at 20-30% RH) while walking on a treadmill (1.34 to
1.56 m/s) for two 50 minutes bouts separated by 10 minutes of rest, significantly lowered

submaximal VO, by 3-7% in a temperate environment.
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The phosphorylation of adenosine triphosphate (ATP) occurs from the release of
energy as H™ travels down the concentration gradient from the intermembranous space to
the matrix of the mitochondria. This process is not entirely efficient, in part because of
the presence of uncoupling protein 3 (UCP3) located throughout the innermembrane of
the mitochondria of skeletal muscle (2). These proteins allow leakage of H* from the
innermembranous space to the matrix, leading to a decreasing concentration gradient
which can potentially reduce efficiency. There is evidence to support that mechanical
efficiency (percentage of energy that goes to mechanical work) is negatively correlated
with UCP3 in trained individuals (28, 30). For example, Schrauwen et al. (30) reported
that trained individuals (VOzmax = 66.9 £ 2.6 ml/kg/min) had lower UCP3 mRNA
expression compared with untrained individuals (VOzmax = 51.5 £ 1.5 ml/kg/min), and
that with less UCP3 expression an individual is more efficient during submaximal
exercise. Fernstrom et al. (8) further supported this hypothesis in reporting lower UCP3
MRNA and protein after six weeks of endurance training. They also found reduced
uncoupling respiration in mitochondria that were isolated from human skeletal muscles.
The findings of these studies suggest that lower expression of UCP3 leads to improved
ATP coupling, which may lead to less oxygen consumption to produce ATP (or improved
economy and efficiency).

In humans, UCP3 mRNA expression is positively correlated (r = 0.86, p < 0.05)
with the difference in energy expenditure from two different continuous (60 hours)
moderate cold exposures (16°C versus 22°C) (31). Researchers concluded that since 24
hour energy expenditure increased along with greater UCP3 expression, UCP3 regulates

energy production. It has also been reported that UCP3 can be up-regulated 2-3 fold in rat
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skeletal muscle after 24-hours of cold exposure at 5°C (19, 33). If cold exposure
promotes greater UCP3 expression leading to an increase in mitochondrial uncoupling
(33) and therefore increasing thermogenesis, perhaps heat stress would lower UCP3
expression reducing mitochondrial uncoupling leading to enhanced muscle economy and
efficiency. In humans, it has been suggested that HA may induce changes in
mitochondrial function leading to improved muscle efficiency (13). Since UCP3 was only
discovered in the 1997 (2), little research exists investigating its role in muscle economy
and efficiency after heat stress. Only a few studies have investigated the effect of heat
stress on uncoupling proteins. Using an animal model, Mujahid et al. (26) reported that
18 hours of continuous heat exposure reduced avian uncoupling protein (avUCP, which
has 70% homology to mammalian UCP3 (27)) expression in broiler chickens, providing
support that heat stress may lower UCP3 expression. More recently, in humans Slivka et
al. (34) and Dumke et al. (6) reported that 1 hr of exercise followed by 3 hours of passive
recovery in the heat (33°C and 40°C, respectively) did not affect UCP3 expression. At
least in these studies, it appears that heat stress may not affect UCP3. Perhaps the shorter
duration of heat stress or lower temperature by the work of Slivka et al. (34) and Dumke
et al. (6) may explain the differences of their findings compared to those reported by
Mujahid et al. (26).

Given the findings that HA improves submaximal economy during exercise in a
thermoneutral environment, and the previous observations that HA improves SaO, and
exercise tolerance in a hypoxic environment (10, 11) it is plausible that HA can be used
as a cross environmental stressor to improve submaximal economy and efficiency during

exercise at altitude, therefore indicating that similar adaptations occur from both heat and
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altitude exposure. One possible mechanism for this phenomena is that reduced UCP3
expression leads to better ATP coupling, and this reduces the amount of VO, needed for

the resynthesis of ATP during submaximal exercise.

Study purpose and hypotheses
The purpose of this study was to determine the effects of a cross-environmental
stressor of 10 days of heat acclimation on improvements in submaximal exercise
economy and efficiency both at 1600 m and 4350 m in trained individuals and to
investigate possible mechanisms using a cell model.
Purposes of this Study
1. Human model: To determine whether exercising in a hot and humid environment
leads to increased exercise economy and efficiency during submaximal exercise
in a thermoneutral environment at 1600 m and 4350 m.
2. Cell model: To determine if C2C12 murine myocyte exposed to 24 hr of heat
(40°C) expresses lower UCP3 mRNA, UCP3 protein and reduced uncoupling.
Hypotheses
In this study | tested the following hypotheses:
1. Ten days of heat acclimation will increase economy and efficiency during
exercise at 1600m and 4350m.
After 10 days of heat acclimation, Sawka et al. (29) reported that exercise

economy is improved by 3-7% in a temperate environment, but this hypotheses
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has not been tested during exercise at altitude. Mechanical efficiency is defined
as a ratio of the amount of energy produced relative to the metabolic energy used
for movement. A previous report has suggested that high-altitude natives have
improved efficiency during exercise which has been used to explain their high
work capacity at altitude (24). This hypothesis has not been tested in non-
acclimated individuals or after heat acclimation. Exercise economy and
efficiency are important aspect of exercise capabilities at sea-level, and due to a
reduction in oxygen transport at altitude, improved economy of movement and
efficiency may perhaps be beneficial during exercise in hypoxia.

. After 24 hours of heat exposure UCP3 mRNA, UCP3 protein, and metabolic rate
will be reduced when compared to the control.

There are two human studies that have reported no change in UCP3 mRNA
expression after acute (4 hours) heat exposure (6, 34). There are no studies that
have investigated changes in UCP3 mRNA, UCP3 protein and metabolic rate
after 24 hours of heat stress. One study investigated the effects of one hour heat
stress on C2C12 myotubes on mitochondrial proteins (20). They reported
increases in the mitochondrial biogenesis proteins, nuclear receptor of factor
1/2, mitochondrial transcription factor, cytochrome Il and 1V(20). There
currently are no data investigating the effects of prolonged heat stress on
mitochondrial density and metabolic function on C2C12 myocytes. Mujahid et al.
(26) reported lower avUCP3 in broiler chickens after 18 hours of continuous
heat stress, so | conducted preliminary experiments on C2C12 myocytes using a

24-hr continuous heat exposure at 40°C, and observed increased mitochondria,
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reduced mitochondrial uncoupling, lower basal oxygen consumption and reduced
UCP3 mRNA expression in the heat stress versus control cells.

Limitations

1) In this study | measured submaximal exercise economy and efficiency
before and after 10 days of HA at 1600 m and 4350 m. Heat acclimation
has been shown to increase exercise economy at sea-level (32), while there
is limited investigation on efficiency. However, no studies have looked at
the effects of HA on acute submaximal economy and efficiency at high
altitude. It is unclear if exercise at acute altitude exposure will affect the
hypoxic ventilatory response that leads to higher ventilation rate. A
limitation is that high ventilation rate at altitude may increase respiratory
exchange ratio (RER), limiting our ability to accurately calculate
efficiency.

2) Subjects exercised at low workloads (30 and 20% below the corrected
power output derived from graded exercise tests at 1600 m and 4350 m) to
ensure subjects can reach steady-state at 4350m. A limitation to the low
workload is that these intensities may not represent the range of actual
exercise intensities individuals might perform when making altitude
sojourns.

3) In this study, each individual served as their own control from pre-heat
acclimation to post-heat acclimation. A limitation is that there was no
control group. However, using trained cyclists exercising at these low

intensities, | assume there would not be a training effect after the 10 day
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4)

5)

6)

7)

10

heat acclimation protocol. Similar HA studies using individuals with an
average VOzmax >53 ml/kg/min did not report any training effect (10, 13,
21).

This was a 10-day heat acclimation protocol looking at exercise during
acute exposure to 4350 m. If | report improvements in submaximal
exercise economy and efficiency at 4350 m, the results can only be used
for individuals making acute (one day) altitude sojourns. The results
cannot be extended to chronic altitude exposure.

| recruited trained individuals to participate in this investigation in order to
control for fitness and training changes during HA. A limitation to subject
selection is that the findings may only be applicable to less or more trained
individuals.

I measured whole body VO, in humans to calculate submaximal exercise
economy and efficiency changes after HA when exercising at 1600 m and
4350 m. To show “proof of concept” I used an in vitro model using
C2C12 murine myocytes exposed to 24 hours of heat at 40°C. Using an in
vitro model may be a limitation to our ability to explain the physiological
adaptations that occur in vivo.

A limitation of the in vitro model is that cellular metabolism was only
measured at 1600 m. In the in vitro model, metabolic rate and efficiency
of the C2C12 myocytes can only be measured at 1600 m due to technical
issues with our ability to use the laboratory equipment to measure cellular

metabolic rate and efficiency in the altitude chamber (4350 m).
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Significance of the Study

The ability to improve submaximal exercise economy and efficiency during
exercise is important to an individual’s ability to better tolerate exercise both at sea-level
and at altitude. If molecular adaptations from heat acclimation induce improved economy
and efficiency that led to better exercise tolerance at 4350 m, it may provide an
alternative method of altitude acclimation that would not require altitude exposure. This
would be advantageous to the general population traveling to moderate and high altitude
for recreational activities and work. From the use of an in vitro model, I can gain a better
understanding of how heat stress affects cellular metabolism as this may have both sport
and clinical implications. The understanding of how mitochondria adapt to heat stress
would give us a better understanding of cellular function and therefore may be beneficial
for individuals who suffer from varying forms of mitochondrial disease. For example, if
heat stress induces cellular adaptation that improves whole body function, individuals
with mitochondrial disease who have low exercise tolerance would then be able exercise

for longer durations to improve fitness level.
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CHAPTER 2
REVIEW MANUSCRIPT
This chapter presents the review manuscript, titled “The use of a cross-
environmental stressor of heat acclimation on skeletal muscle function during acute
exercise at altitude”. This manuscript will be submitted to Temperature. It is authored by
Roy M. Salgado, Ailish C. White, Suzanne M. Schneider, Daryl L. Parker, Len R.
Kravitz and Christine M. Mermier. The manuscript follows the formatting and style

guidelines of the journal. References are provided at the end of the chapter.
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Abstract

High altitude exposure reduces oxygen transport from the lungs to the muscles,
which contributes to the reduction in submaximal and maximal aerobic capacity which in
turn reduces exercise performance. In mountaineers and high-altitude natives, enhanced
exercise economy and efficiency has been attributed to improved altitude tolerance and
work capacity compared to sea level natives. Heat acclimation increases sweat rate and
cutaneous blood flow, lowers heart rate and induces plasma volume expansion and has
also been shown to lower submaximal oxygen consumption or improve exercise
economy during exercise in a thermoneutral environment. | propose the existence of a
cross-environmental stressor model in which heat acclimation can be used to induce
skeletal muscle adaptations, thus allowing for improved tolerance to hypoxia. | present
evidence that heat acclimation lowers uncoupling protein 3 expression in the
mitochondria which improves ATP coupling and enhances exercise economy and
efficiency. In addition, using evidence from in vitro studies, | show that heat stress
promotes muscle hypertrophy and mitochondrial biogenesis in muscle cells. I suggest that
a prior program of heat acclimation can induce muscle adaptations, which will improve
work during acute exercise at altitude. This novel cross-acclimation model has
implications for individuals who have limited access to high altitude terrain or expensive

equipment to simulate high altitude.

Key words: Altitude, Hypoxia, Heat tolerance, Skeletal muscle
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Introduction

The effect of altitude (hypoxia) on the exercise capacity (VO2zmax) in humans has
been studied extensively™ %, At higher altitudes, the lower barometric pressure causes a
decrease in partial pressure of inspired oxygen reducing the pressure gradient of oxygen
from the alveoli to the capillaries. The impaired oxygen transport from the lungs to the
exercising muscles * results in a reduction in submaximal, and maximal exercise capacity
* which lowers cycling time-trial performance ° at altitude. Since VOamax is reduced at
altitude, oxygen consumption for a given exercise intensity represents a greater
percentage of VO2max When compared to sea level.

The amount of oxygen consumed at a given exercise intensity (power output or
running velocity) is defined as the exercise economy (Watts/LO,) °8, whereas, efficiency
is defined as the ratio between physical work and energy expenditure while performing
physical work (expressed as Kcals or as a percentage) * °. While VOupmax is a strong
predictor of performance, submaximal variables such as economy and efficiency also
determine exercise performance*™3. Conley et al. ' reported that in trained and
experienced runners with similar VO,nax, €conomy explained 65% of the variation in 10-
km race times. Lucia and colleagues *° suggested that high cycling economy and
efficiency can compensate for a lower VO;max in world-class professional cyclists, and
contribute to their success in Grand Tour events.

In a hypoxic environment, oxygen transport from the lungs to the muscle is
compromised 3, therefore an improvement in economy and efficiency could be beneficial
for individuals exercising at altitude. Indeed, enhanced exercise economy (lower VO, for

a given exercise work rate) has been found to improve exercise tolerance at altitude (5533
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m) in mountaineers *® and in amateur cyclists performing a simulated cycling time-trial at
2500 m **. While the role of efficiency during exercise is still debated, recent findings
suggest a ~3.5% lower economy during submaximal cycling at a simulated altitude of
1500 m compared to sea level *8. A lower efficiency at altitude suggests a loss of energy
to do work. Perhaps, improved exercise efficiency is beneficial at altitude as more energy
would be available for muscular work, rather than lost as heat production.

Many studies have examined how humans acclimate to high altitude. The

19-21

traditional altitude acclimatization model is living and training at altitude which

requires that individuals reside at high altitude. Contemporary training model such as

intermittent hypoxic training or exposure (IHE)® %

require individuals to be acutely (3
weeks 4 hours a day five days per week at 4300 m) exposed to simulated altitude during
rest or exercise. The primary benefits of high altitude acclimatization include an
enhanced hypoxic ventilatory response and increases in arterial partial pressure and red
blood cell production 2% which help restore oxygen-carrying capacity and contribute to
improved exercise tolerance at altitude. Researchers have reported that continuous
exposure to high altitude (traditional altitude training) is the optimal method to induce

24,25

altitude acclimatization and to improve exercise tolerance at altitude while

intermittent high altitude (hypobaric hypoxia or normobaric hypoxia) exposure provides
an alternative less but effective approach to continuous altitude acclimation 2*2°,
However, limitations to both traditional and intermittent altitude exposures are that

individuals may not have: 1) access to high altitude terrain, 2) time needed to spend at

altitude or 3) the expensive equipment required to simulate high altitude. Thus,
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alternative training approaches may be beneficial to those planning on making acute
altitude sojourns.
The use of a cross-environmental stressor (CES) model for this purpose has not

| 8 and human ?°

been thoroughly investigated %”. There is some evidence from anima
studies that prior heat acclimation HA may improve exercise tolerance in a hypoxic
environment. Heat acclimation is reported to improve exercise economy by 5 to 10%

during submaximal walking ** %

which may explain why exercise tolerance at altitude is
improved °. However, the mechanism for the improved economy has not been fully
elucidated. One suggestion is that HA improves slow-twitch motor unit recruitment in
skeletal muscle during exercise, leading to lower exercise VO, ®°. I suggest an alternative
hypothesis, in which skeletal muscle adapts to heat stress through adaptations at the
cellular level. Such adaptations may include decreased uncoupling protein 3 (UCP3)
within mitochondria, or an increased mitochondrial density. These changes may improve
exercise economy and efficiency and lead to improvements in exercise capacity. From in
vitro models, heat-stressed muscle cells have increases in myosin heavy chain
composition *2, up-regulation of peroxisome proliferator-activated receptor co-activator
la (PGCla) *, and in animal studies an up-regulation of calcineurin *. These
adaptations may lead to an enhanced exercise performance in hypoxia.

This approach of using HA as a CES to induce muscular adaptations to improve
exercise responses at altitude provides a novel training method. Therefore, the aim of this
review is to present evidence of the potential benefits of this concept with focuses on

skeletal muscle adaptations due to heat stress and how it may affect acute work capacity

at altitude. For recent reviews on topics that address the changes with HA in the
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cardiovascular system, polycythemia and vascular growth, see two papers by White et al.
and Salgado et al. ***®. This paper will address data concerning: 1) the changes in oxygen
consumption and exercise performance at altitude, after acute and chronic exposure, 2)
evidence for an increased economy and efficiency during HA in a temperate
environment, and finally, 3) the possible role of heat stress on mitochondrial biogenesis
and UCP3 expression, and how these adaptations may improve exercise capacity at
altitude.
Oxygen consumption and exercise performance at altitude

Acute altitude exposure and changes to VOmax and performance

The effects of acute altitude exposure on VO,max and exercise performance have
been well characterized. Squires and colleagues *’ reported reductions in treadmill
running VOzmax In 12 healthy males at altitude of 4, 8, 7, and 12%, with corresponding
reductions in arterial oxygen saturation (SaO,) of 3.5, 3.6, 7.0 and 11.6%), at 914, 1219,
1524 and 2286 m above SL, respectively. Dill et al. * had four individuals perform
maximal exercise on a cycle ergometer at varying simulated altitude (sea level, 2800,
3629 and 4120 m) in a hypobaric chamber. Researchers reported a 10, 14, and 19%
reduction in VO,max cOmpared to sea level, with a 5, 9, and 14% reduction in work

capacity, respectively. Wehrlin et al. *

reported a significant reduction in VOymax below
1000 m in endurance trained runners (VOzmax = 66.1 + 4.3 ml/kg/min). The researchers
investigated the effects of low-to-moderate altitude on oxygen consumption and exercise
capacity and reported a reduction in time-to-exhaustion of 14% for every 1000 m

2
|2

increase in altitude during maximal running. Fulco et al. < acutely exposed 10 healthy

sea-level residents to 4300 m; the authors reported a significant reduction in VOzmax
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(3636 £ 215 ml/min at SL versus 2693 £ 89 ml/min at ALT), simulated 720 kJ cycling
time-trial (TT) performance (73.2 £ 6 minutes at SL versus 111.4 + 6 minutes at altitude),
and power output during the TT (150.0 £ 5 Watts at SL versus 100.4 + 10 Watts at ALT).

Submaximal exercise oxygen consumption after altitude acclimation

During acute and after chronic altitude exposure, VO,max is decreased and is only
minimally regained even after chronic exposure. Since VOmax IS reduced, the ability to
maintain a given submaximal intensity compared to sea level is decreased ***!. In this
section I review the current findings regarding changes in submaximal oxygen
consumption after altitude exposure in both native low-landers and high-landers, and how
enhanced submaximal oxygen consumption may aide in exercise and work performance
at altitude.

Maher and colleagues * investigated the effects of 12 days of high-altitude (4300
m) exposure on submaximal endurance capacity in eight sea level natives. Subjects
exercised at sea level at 75% of sea level VO,max and during acute and chronic altitude
exposure. At sea level, this corresponded to 73.1% of VOzmax (2.70 L/min), while at
altitude it was 78.7% (2.13 L/min) and 76.2% (2.06 L/min) of VO,max On days 2 and 12
of the altitude sojourn, respectively. Exercise economy for a given intensity from days 2
to 12 was not significantly lower; however, the researchers found endurance running time
was greater after day 12. The authors concluded that submaximal endurance could
increase without significant changes in VO,max. They attributed this phenomenon to an
increase in 2, 3DPG which causes a right-ward shift in the oxygen-hemoglobin

disassociation curve leading to greater oxygen unloading at the muscle.
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Bender et al. ®

investigated the effects on oxygen transport in seven military
soldiers before and after acclimatization at 4300 m (Pikes Peak, Colorado). The
investigators reported that VO.nax at altitude was not different before or after
acclimatization (2584 + 120 mL/min versus 2565 + 105 mL/min), and that for a given
submaximal work-load (0, 60, 125, and 185 Watts (W)), submaximal VO, was not
different. They did however report that arterial oxygen content and hemoglobin
concentration (Hb) were significantly higher after altitude acclimatization, indicating

greater oxygen transport. In another study, Lundby et al. **

investigated the effects of
acute and chronic acclimatization (four weeks) of high altitude on substrate utilization at
4100 m (La Paz, Bolivia). The researchers reported no change in plasma catecholamine
levels or substrate utilization during 60 minutes of cycling at a workload corresponding
t0 45% of VO,nmax at altitude. They also reported that economy was not different between
acute and chronic exposure to altitude (1.6 = 0.1 L/min versus 1.4 £ 0.2 L/min). These
two studies indicate that after 12 to 28 days of continuous altitude exposure (~4100 m),
there is no improvement in economy.

To our knowledge, only two studies have shown enhanced economy after chronic

altitude exposure. Macdonald et al. *°

investigated leg blood flow and whole body VO,
responses in five healthy men before and after a 21-day expedition at 6194 m (Mt.
Denali, Alaska). Using a custom-built leg tension-flexion ergometer, they found that
submaximal VO, (1290 + 29 mL/min) was lower when exercising at 50 W after the 21-
day expedition compared to before (1413 £ 63 mL/min) altitude exposure which equates

to an 8% improvement in exercise economy. The authors concluded that enhanced

economy during exercise was due to either improvements in mechanical efficiency
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during the leg exercise (subjects became familiar at performing the leg ergometer
exercise) or, perhaps, muscle efficiency was enhanced due to altitude exposure.

More recently, Latshang et al. *°

investigated the effects of enhanced exercise
economy in mountaineers during an expedition at 5533 m (Mt. Muztagh Ata, Western
China). On days 5, 6 and 11 at 5533 m, subjects performed submaximal exercise on a
cycle ergometer equating to 50 and 75% of their peak power output (PPO) (107 £ 26 and
152 + 37 W, respectively). The researchers reported that on day 11, submaximal VO, was
significantly lower compared to day 5 or 6, both at 50 and 75% PPO (1.18 £ 0.41 versus
1.35 + 0.33 L/min at 50% PPO and 1.61 £ 0.47 L/min versus 1.75 = 0.45 L/min, p <
0.027 at 75% PPO). They also reported an 8 and 7.8% improvement in SaO; and a 5 and
7.3% reduction in heart rate during submaximal exercise at 50 and 75% PPO. Using
multiple regression analysis, the authors concluded that the lower submaximal VO, was a
significant predictor of perception of effort during the two summit attempts. The
investigators attribute the enhanced efficiency at altitude to a decrease in heart rate for a
given workload (due to lower sympathetic tone), reduced basal metabolic rate or a
decrease in mitochondrial oxygen consumption.

Even though submaximal exercise performance is improved after prolonged
altitude exposure, studies have shown that these changes may not necessarily due to
changes in submaximal VO,. However, two studies have reported reduced oxygen
consumption after prolonged altitude exposure for a given exercise intensity ***. It is not
clear why there is a discrepancy in submaximal VO after chronic exposure to altitude,
but it may be specific to the subject population. For example, the subjects in the studies

that found no differences in submaximal VO, after chronic altitude exposure were all sea
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level natives. In comparison, in studies where researchers reported enhanced exercise
economy , the subjects were described as mountaineers'® **. Unfortunately, the
researchers did not give details about the mountaineering experience of their subjects or
the amount of time in which they have spent at high altitude. Perhaps previous high
altitude exposure has an additive effect on improving submaximal VO, when compared
to sea level natives. In high-altitude natives, evidence supports the idea that prolonged

altitude exposure improves submaximal VO, and muscle efficiency*® *

indicating
perhaps that chronic exposure over multiple times is needed to alter economy and
efficiency.

Even with relatively low VO,nmax, high altitude natives have a greater work
capacity at altitude when compared to acclimatized sea-level natives*® *" leading some
investigators to suggest that natives are efficient during exercise. Matheson et al. '
investigated muscle efficiency in four different groups during exercise at simulated high
altitude. These groups were: 1) altitude-adapted Andean natives, 2) sedentary sea level
natives, 3) power trained sea level natives and 4) endurance-trained sea level natives.
Muscle function at the cellular level was measured using P*'-NMR as subjects exercised
using a leg ergometer while breathing room air or FIO, of 14.5%. The researchers
reported that, even though VO.nax and power outputs were significantly lower for a given
intensity in the Andean natives, results from the P*:-NMR showed that muscle pH, [PCr],
[Pi] and fatigue were similar between the Andean natives and the endurance-trained
subjects. This indicates that, at the cellular level, muscle efficiency is enhanced in the

Andean natives both at sea-level and at a simulated altitude. The authors also suggested

that in the Andean natives, ATP resynthesis in the mitochondrial respiration chain
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requires a lower VO,. Unfortunately, submaximal VO, was not measured during exercise
to support their assumption. Marconi et al. *® found that high-altitude adapted Tibetans
who migrated to 1300 m had a lower VO, consumption of 8, 10, and 13% during walking
at 6 km/h at 10, 12.5 and 15% grade and running at 10 km/h at 5% grade at 1300 m when
compared to Nepali natives. The authors proposed that high-altitude natives have a
reduced VO, during exercise due to better ATP coupling.. Other researchers have
suggested that high altitude Andean natives have better ATP coupling allowing for
improved economy and efficiency*® which perhaps is from lower UCP3 expression.
However, careful consideration should be taken when comparing these results to sea-
level natives, as the high altitude native Andeans may have genetic adaptations that allow
for improved economy and efficiency. While there is no evidence to support our
hypothesis, perhaps these high-altitude dwellers have reduced uncoupling protein 3
(UCP3) leading to better ATP coupling, thus requiring less VO, for ATP production. To
our knowledge, only one study has looked at UCP3 expression after altitude exposure *°.
Levett et al. *° found significant reductions in the mitochondrial proteins citrate synthase,
PGCla and UCP3 in 12 mountaineers attempting to summit Mt. Everest from pre to post
summit. Since submaximal VO, during exercise was not measured, | cannot conclude
whether the reduction in UCP3 was associated with a lower VO, at altitude. | can only
speculate that reductions in mitochondrial proteins after chronic high altitude exposure
may indicate mitochondrial and muscle atrophy. Less mitochondrion would likely lead
to lower submaximal and maximal oxygen consumption and impaired economy and

efficiency.
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Exposure to altitude reduces VOnax, and thus individuals are exercising at a
higher percentage of VO,max for any given workload when compared to sea-level.
Therefore, because exercise at altitude is more difficult, submaximal exercise
performance also is reduced. In sea-level natives, submaximal VO, does not change at
higher altitudes, however it is reduced in mountaineers and high-altitude natives. The
improved economy and muscle efficiency in these individuals may explain their higher
exercise tolerance and work capacity compared to sea level natives. Since these
adaptations have not been reported in low altitude natives, perhaps a training method that
induces similar muscle adaptations can be used as an alternative to altitude exposure for
improvement of exercise tolerance at altitude.

Heat stress and the muscle

Submaximal exercise economy after heat acclimation

Exercising in the heat increases cardiovascular strain and lowers exercise
capacity’>>%, After HA, heat tolerance is enhanced during exercise resulting in lower core
temperature >3, lower heart rate >3, increased cutaneous blood flow **, plasma volume
expansion >°, and enhanced sweat rate *°. Another adaptation that has been observed after

30, 57-59

HA is a lowered metabolic rate during exercise in a hot environment and

temperate environment®® 316061,

Robinson et al. *°

reported a reduction in VO, during exercise after HA. In their
study, five subjects exercised in a hot environment (40°C and 23% RH) for 10 to 23 days
at varying individualized durations to induce fatigue. They reported that heart rate, core
temperature and skin temperature were reduced after ~5 days and that mean VO, was

decreased by 7.6% at the same level of exercise following HA. The investigators
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suggested that since their subjects did not improve fitness levels from exercising in the
heat, the lower mean VO, was attributed to a decrease in energy requirements in the heat
due to acclimation. Subsequent studies have also reported lower VO, for a given absolute
intensity after HA. Strydom et al. ® heat acclimated African Nyasa mine workers for 5
hrs/day for 3 weeks at 36°C. During the step test mean VO, was ~11, 16.7 and 21% lower
on the 1%, 3" and 5™ hour between day 1 and day 12 of HA. Later, Gisolfi et al. >
investigated the effects of prior high-intensity exercise on work tolerance in the heat
using treadmill exercise. While the main purpose of their study was not to investigate
submaximal VO, after HA, the researchers reported that after eight consecutive days of
treadmill walking for 100 minutes at 5.6km/hr in the heat (29°C), submaximal VO, was
significantly reduced (day one 33.3 £ 0.3 versus day eight 24.5 + 1.49 ml/kg/min).
Shvartz et al. * investigated the physiological responses during exercise in a
thermoneutral and hot environment in men of varying aerobic capacity after HA. In their
study, 26 healthy young men (trained 57-65 ml/kg/min, untrained 43-50 ml/kg/min, unfit
29-38 ml/kg/min and control 41-49 ml/kg/min) participated in an eight-day HA
intervention. The researchers reported that, as a whole, average submaximal VO, was
~11 and 8% lower at the low (41 W) and moderate (82 W) exercise intensities during
exercise in a cool environment and 10% lower during exercise in the heat.

Researchers® >

also reported an increase in VO, after HA. Given their results, it can
be speculated that the improvement in submaximal VO, may be attributed to an increase
in VO,max; an increased VO,max could cause those exercising at a given submaximal

workload to be working at a reduced VO, and therefore may lead to better exercise

economy. For example, the unfit subjects’ VO max increased 18%, while VO, at 41 and
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82 W was reduced by ~16 and 11%, respectively. However, the increase in VOymax may
not fully explain the reduction in submaximal VO, (improved exercise economy) during
exercise. In the trained individuals, submaximal VO, was significantly reduced by 8.5
and 10.7% at low and moderate work-loads, respectively, with a non-significant
improvement in VO,max (2.6%). This suggests that heat stress-induced exercise economy
can be improved independent of changes in VOzmax.

Two studies specifically investigated the changes in submaximal VO, after HA.
Jooste and Strydom ® investigated the effects of HA on various physiological factors
related to efficiency. Four male subjects were exposed to heat (31°C ) for four hrs/day
over a seven day period. During heat exposure, subjects exercised using a step protocol
where exercise intensity was progressively increased from 35 to 70 W. To assess
submaximal VO,, subjects exercised on a treadmill for four hours at 45% VOmax in @
cool environment (20°-22°C). These investigators reported that VO, was significantly
lower in the HA subjects during the last 90 min of exercise in the cool environment from
pre to post HA. They concluded that reduced oxygen consumption after HA was
attributed to improved economical caloric expenditure (energy expenditure). Sawka et al.
% provided further support that HA could reduce submaximal VO, during exercise in a
temperate environment. Researchers concluded that 10 d of HA using varying protocols
(40-49°C at 20-30% RH) while exercising on a treadmill at 1.34 to 1.56 m/s, for two 50
minutes bouts separated by 10 minutes of rest significantly lowered submaximal VO, by
3-7% in a temperate environment. They suggest that lower VO, may be due to more

efficient recruitment of type | muscle fibers. However, Young et al. °’ later found that
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after 9 consecutive days of HA (49°C, 20%RH), submaximal VO, before and after HA
was not different (2.35 L/min and 2.33 L/min, respectively) in a temperate environment.

Piwonka and Robinson ® investigated the effect of HA in trained runners. Using a
protocol similar to Robinson et al. *°, Piwonka and Robinson ® exposed four subjects to
acute heat exposure (4 d) while walking on a treadmill at 5.6km/hr at grades up to 5.6%
in a hot environment (40°C) for 85 min/d. While the authors did not directly measure
VO,, they reported that metabolic rate (calculated using the heat storage equation) was
not different after acute heat exposure. Furthermore, Wyndham et al. ® reported that after
10 days of HA in which subjects exercised at 40-50% of VOzmax, VO2 during exercise
was not different (1.1 L/min for pre-HA versus 1.2 L/min after day 10)..

Exposure to heat increases cardiovascular strain especially during exercise, which
acutely lowers exercise tolerance in a hot environment. While some investigators have
observed no change in submaximal VO, most researchers have reported reductions both
in unfit and fit individuals after HA. It is unclear as to the discrepancies within the
results. A possible explanation is that study protocols were not uniform as they used
different modes of exercise during the HA (step exercise and treadmill walking). Perhaps,
individuals performing step exercise became more familiar with the mode of exercise
during the HA protocol leading to an observed improved EC. Nevertheless, while the
largest change in submaximal VO, after HA in both hot and temperate environments
were from studies using step-testing, reduces VO2 during exercise has also been
observed from studies using treadmills.

Mechanisms of improved submaximal VO, from heat acclimation
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The mechanisms involved in the improvement of submaximal VO, during
exercise have not been fully elucidated. Researchers have reported these improvements in
economy with comparisons of untrained and trained populations ®® and after HA **
A lower VO, for a given workload indicates improved exercise economy and suggests
that there may be adaptations at the cellular level allowing for lower oxygen cost to
produce the same amount of ATP during exercise.

One explanation that has been proposed for improved submaximal economy and
efficiency has focused on the characteristics of skeletal muscle fiber type, with type |

fibers suggested to be more economical and efficient during exercise ®"

compared to
type 1l fibers. We propose an alternate hypothesis that heat stress induces a change in
skeletal muscle by decreasing UCP3 on the mitochondrial membrane, which in turn
improves mitochondrial uncoupling. In addition, heat stress up-regulates signal
transduction pathways which cause changes in muscle fibers such as increase in
mitochondrial biogenesis® which may lead to an improved exercise economy.

In 1997, Boss et al. *® discovered a new member of the mitochondrial protein
family located on the inner membrane of the mitochondria, which was named UCP3.
This protein is specifically expressed in skeletal muscle and has been suggested to play a
role in the uncoupling of oxidative phosphorylation ®. On the inner membrane of the
mitochondria, protein complexes (complex I, Il, and V) pump H+ from the matrix to the
intramembranous space. This leads to an increase in the concentration gradient between
the intramembranous space and the matrix which is also known as the chemi-osmotic

gradient "°. Since H+ is impermeable to the inner membrane, it travels down the

concentration gradient through the FO-FI complexes located throughout the inner
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membrane where it releases free energy required for phosphorylation of ADP + Pi and
forms ATP "°. Uncoupling protein 3s are located throughout the membrane and cause H+
to leak from the intermembranous space to the matrix which is termed the uncoupling
process. Vidal-Puig et al. "* highlighted the relationship between UCP3 and
mitochondrial uncoupling when they reported better ATP coupling and lower cellular
VO, consumption in the skeletal muscle of UCP3 knock-out mice compared to their
wild-type counterparts. These results suggest that UCP3 plays a role in lowering muscle
respiration, thereby improving muscle efficiency.

Uncoupling protein 3 has been shown to have a negative relationship with
metabolic efficiency during exercise in trained versus untrained individuals. Schrauwen

etal. 2

reported that UCP3 expression was correlated with exercise efficiency.
Researchers compared the relationship between efficiency and training status in 18 male
subjects. Subjects performed a maximal exercise test and three 15-minutes bouts of
submaximal exercise at 30, 45, and 60% of their peak power output on a cycle ergometer
to determine efficiency. Researchers found that: 1) trained individuals (VOzmax - 66.9
2.6 ml/kg/min) expressed lower UCP3 mRNA compared to untrained individuals (51.5 +
1.5 ml/kg/min), 2) UCP3 mRNA was negatively correlated with VO;max (r =-0.61, p =
0.009), and 3) UCP3 mRNA was negatively correlated with mechanical efficiency
during submaximal exercise (r = -0.56, p = 0.019). Fernstrom and colleagues " further
found that UCP3 was significantly lower after six weeks of an endurance training
intervention Subjects trained for 1 hr four times per week for six-weeks at 70% VO zmax

for first 30 minutes followed by 30 minutes of interval training. The investigators also

reported a significant State 4 uncoupling respiration, defined as oxygen consumption by
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the mitochondria, (pre 7.7 + 0.6 versus post 6.3 = 0.3 nmolO,/min) after an endurance
training intervention. Others have found similar reductions in mitochondrial respiration’*

™ Findings from these studies ">

provide evidence that: 1) trained individuals have
reduced UCP3 mRNA expression which is correlated with improved efficiency compared
to untrained individuals, 2) UCP3 expression is lower after chronic endurance training,
and 3) mitochondrial uncoupling respiration is lower with lower UCP3 expression. It
could therefore be concluded that improved training status (endurance- trained for > 6
week) leads to lower mitochondrial uncoupling (improved cellular efficiency) and a
reduced VO, for a given submaximal workload.

Research evidence suggests that cold exposure increases UCP3 in both human
and rat "° skeletal muscle which leads to greater uncoupling and increased thermogenesis.
In cold environments, this adaptation causes an increase in core temperature which
improves cold tolerance, but also lowers muscle efficiency. If cold stress increases UCP3
in skeletal muscle which promotes thermogenesis, it is plausible that chronic heat stress
over a prolonged period of time could lower UCP3 expression. This adaptation could lead
to lowered thermogenesis and improved muscle efficiency and may be beneficial during
exercise. This hypothesis that we are proposing could explain why submaximal economy
and efficiency is improved after HA. However, the research on heat stress and UCP3 is
limited. In an animal model, Mujahid et al. /" exposed 3 week old broiler chickens to
either a thermoneutral or hot environment (34°C) for 18 hour. They reported that there
was a significant reduction in avUCP (73% homology to mammalian UCP3) mRNA and
protein in the heat stressed animals, supporting the idea that heat stress alone reduces

UCP3 and lowers muscle thermogenesis.
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Slivka et al. ® investigated mRNA expression of mitochondrial proteins in nine
recreationally active males following 1 hour of exercise and 3 hour of passive recovery at
different environmental conditions. These environmental conditions were cold (7°C, 40%
humidity), room temperature (20°C, 40% humidity), or hot (33°C, 40% humidity). The
researchers reported the different environmental temperatures did not affect mitofusion2
and UCP3 mRNA expression. It should be noted that while not statistically significant,
UCP3 was slightly lower in the hot compared to the room temperature trial. Since UCP3
expression has been shown to be affected by fat oxidation, in their follow-up study
Dumke et al. ™ investigated whether carbohydrate ingestion during acute exercise in the
heat would attenuate changes in mitochondrial gene expression. Researchers reported that
mitofusion2 and GLUT4 expression was not affected by carbohydrate or placebo during
exercise in the heat. However, UCP3 mRNA expression was attenuated in the
carbohydrate versus the placebo treatment. The work from this research group suggests
that UCP3 may be affected by substrate availability, rather than environmental stress.
However, these studies used acute heat stress (3 hours), so perhaps longer heat exposure
at higher temperatures may show lower UCP3. More studies with longer heat exposure,
such as using a HA protocol are needed to determine the effect of HA on UCP3
expression.

The effect of mitochondrial uncoupling on exercise performance suggests the
uncoupling process plays an important role in work capacity. Schlagowski et al. ® found
that mice treated with 2-4 dinitrophenol (DNP), a pharmacological drug that transports
protons across the innermembrane, increases mitochondrial uncoupling and resting

oxygen consumption. Researchers reported a significant decrease (11%) in running speed
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(42.4 £ 1.7 cm/sec in those treated with DNP vs. 47.6 = 1.5 cm/sec in control) and
impaired running economy (3.1 = 0.1 ml/kg/min in control vs. 3.8 £ 0.2 ml/kg/min in
DNP-treated mice).

Mechanism for changes in muscle characteristics from heat stress

Skeletal muscle has high plasticity as it has the ability to adapt to different
stressors. In muscle cells heat stress alone appears to promote muscle hypertrophy ** and
causes up-regulation in signaling pathways that increase myosin heavy chain (MHC) *
and mitochondrial biogenesis **. These pathways may lead to improvements in
cardiovascular fitness level and exercise performance. Researchers found that after 60
minutes of exposure to acute heat stress during rest (41°C), Wistar rats had an increase in
intracellular calcineurin. They suggested the increase was activated by heat-stress
induced intracellular calcium release, which then promoted muscle hypertrophy &

Yamaguchi et al.

exposed human skeletal muscle myotubules (HSMM) and
C2C12 cells to varying temperatures (37°C, 39°C and 41°C) for up to 72 hours. The
investigators found that HSMM were larger in diameter (hypertrophy) when cells were
exposed to 39°C at 72 hour compared to the control treatment (37°C). They also reported
an 1.6 fold increase in MHCI protein (p < 0.01) after 72 hours, and a 1.8 fold and 2.1 fold
increase in MHCII protein (p < 0.05) compared to control treatment after being exposed
to 39°C for 48 and 72 hours respectively. To investigate the mechanism of action, they
measured the co-transcription factor PGCla and found an increase after 48 hours (p <
0.05) and 72 hours (p <0.01) in C2C12 cells, but only an increase in PGCla mRNA after

24 hour in HSMM. The investigators suggested that heat stress limits the ability of the

sarcoplasmic reticulum to re-uptake calcium. Calcium activates the PGC1a pathway and
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promotes changes in MHC proteins %, which also acts to regulate mitochondrial
biogenesis ®. Liu et al. * exposed C2C12 myotubes to 1 hour of heat (40°C) for 5 days
followed by 24 hour of incubation in a thermoneutral environment. They showed
increases in PGCla, complex I, II, III, IV proteins and ATP synthase compared to control
treatment (37°C), which further supports the idea that heat stress promotes mitochondrial
biogenesis.

In summary, in humans, HA has been reported to reduce VO, (improve economy)
during submaximal exercise, which we propose is mediated by a decrease in UCP3 and
improved mitochondrial uncoupling. This adaptation may lead to the production of the
same amount of ATP which then requires lower oxygen consumption compared to non-
heat acclimated individuals. In addition, in animal and cells models, it has been found
that heat stress induces changes in skeletal muscle that are similar to endurance training.
These include muscle hypertrophy and mitochondrial biogenesis, which improves
skeletal muscle function leading to improved sports performance. A combination of these
heat-induced adaptations might be beneficial as a cross-environmental stressor training
model for individuals making acute altitude sojourns where oxygen transport limits
exercise performance. Perhaps these adaptations allow for an improved muscle function
when the muscle is hypoxic.

There are potential negative effects from adaptations due to heat acclimation that
may limit exercise capacity at altitude. Previous examinations show that HA can
significantly increase plasma volume by 6.5%, which leads to an increase in cardiac
output and stroke volume®>. Plasma volume expansion causes a hemodilution effect

which leads to less viscous blood. This effect reduces transit time of blood passing
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through the pulmonary system reducing gas diffusion, impairing oxygen transport and
therefore reducing oxygen saturation at altitude. The plasma volume expansion can also
reduce hemoconcentration effect commonly observed at altitude which is an adaptation
that occurs to increase oxygen carrying capacity. In addition, after HA researchers®* have
reported higher blood flow to the skin to dissipate heat during exercise. At altitude, this
re-direction may lead to a competition of blood flow to the skin rather than the muscles
therefore reducing oxygen transport.
Conclusion

Exposure to altitude decreases oxygen transport which leads to a reduction in
maximal and submaximal oxygen consumption and impairs exercise performance.
During prolonged altitude exposure there is an increased hypoxic ventilatory response
and polycythemia that acts to restore oxygen transport and contributes to improved work
capacity. High altitude natives and individuals who have repeatedly climbed high-
mountainous terrain have an improved exercise economy and efficiency which aids in
their high altitude work capacity. While these adaptations are beneficial during altitude
sojourns, they do not occur in sea level natives. We propose that individuals preparing for
an altitude sojourn use the cross-environmental stressor model of HA to improve exercise
economy and efficiency. In heat stressed muscle cells, promotion of mitochondrial
biogenesis and reduction in UCP3 has been established. These adaptations may be

beneficial to improving muscle function during hypoxia.

www.manaraa.com



38

References

1. Sutton JR, Reeves JT, Groves BM, Wagner PD, Alexander JK, Hultgren HN,
Cymerman A, Houston CS. Oxygen transport and cardiovascular function at extreme
altitude: lessons from Operation Everest Il. Int J Sports Med 1992; 13 Suppl 1:S13-8.

2. Wagner PD. Operation Everest I1. High Alt Med Biol 2010; 11:111-9.

3. Wagner PD. The physiological basis of reduced VO2max in Operation Everest II.
High Alt Med Biol 2010; 11:209-15.

4. Robergs RA, Quintana R, Parker DL, Frankel CC. Multiple variables explain the
variability in the decrement in VO2max during acute hypobaric hypoxia. Med Sci Sports
Exerc 1998; 30:869-79.

5. Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler DT, Stulz D, Staab JE,
Robinson SR, Skrinar GS, Lewis SF, et al. Intermittent altitude exposures improve
muscular performance at 4,300 m. J Appl Physiol (1985) 2003; 95:1824-32.

6. Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports
Exerc 2001; 33:621-7.

7. Lucia A, San Juan AF, Montilla M, CaNete S, Santalla A, Earnest C, Perez M. In
professional road cyclists, low pedaling cadences are less efficient. Med Sci Sports Exerc
2004; 36:1048-54.

8. Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of World Class
Cycling. J Sci Med Sport 2000; 3:414-33.

9. Chavarren J, Calbet JA. Cycling efficiency and pedalling frequency in road
cyclists. Eur J Appl Physiol Occup Physiol 1999; 80:555-63.

10. Hopker J, Passfield L, Coleman D, Jobson S, Edwards L, Carter H. The effects of
training on gross efficiency in cycling: a review. Int J Sports Med 2009; 30:845-50.

11.  Schlagowski Al, Singh F, Charles AL, Gali Ramamoorthy T, Favret F, Piquard F,
Geny B, Zoll J. Mitochondrial uncoupling reduces exercise capacity despite several
skeletal muscle metabolic adaptations. J Appl Physiol (1985) 2013.

12.  Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running
economy in trained distance runners. Sports Med 2004; 34:465-85.

13.  Di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P,
Soule RG. Energetics of best performances in middle-distance running. J Appl Physiol
(1985) 1993; 74:2318-24.

14.  Conley DL, Krahenbuhl GS. Running economy and distance running performance
of highly trained athletes. Med Sci Sports Exerc 1980; 12:357-60.

15. Lucia A, Hoyos J, Perez M, Santalla A, Chicharro JL. Inverse relationship
between VO2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc
2002; 34:2079-84.

16. Latshang TD, Turk AJ, Hess T, Schoch OD, Bosch MM, Barthelmes D, Merz
TM, Hefti U, Hefti JP, Maggiorini M, et al. Acclimatization improves submaximal
exercise economy at 5533 m. Scand J Med Sci Sports 2013; 23:458-67.

17. Muggeridge DJ, Howe CC, Spendiff O, Pedlar C, James PE, Easton C. A single
dose of beetroot juice enhances cycling performance in simulated altitude. Med Sci
Sports Exerc 2014; 46:143-50.

18. Noordhof DA, Schoots T, Hoekert DH, de Koning JJ. Is gross efficiency lower at
acute simulated altitude than at sea level? Int J Sports Physiol Perform 2013; 8:319-22.

www.manaraa.com



39

19. Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP. Maximal performance
at altitude and on return from altitude in conditioned runners. J Appl Physiol 1967,
23:259-66.

20. Faulkner JA, Daniels JT, Balke B. Effects of training at moderate altitude on
physical performance capacity. J Appl Physiol 1967; 23:85-9.

21. Faulkner JA, Kollias J, Favour CB, Buskirk ER, Balke B. Maximum aerobic
capacity and running performance at altitude. J Appl Physiol 1968; 24:685-91.

22. Katayama K, Sato K, Matsuo H, Ishida K, lwasaki K, Miyamura M. Effect of
intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes.
Eur J Appl Physiol 2004; 92:75-83.

23. Hochachka PW. Mechanism and evolution of hypoxia-tolerance in humans. J Exp
Biol 1998; 201:1243-54.

24, Muza SR, Beidleman BA, Fulco CS. Altitude preexposure recommendations for
inducing acclimatization. High Alt Med Biol 2010; 11:87-92.

25.  Fulco CS, Muza SR, Beidleman B, Jones J, Staab J, Rock PB, Cymerman A.
Exercise performance of sea-level residents at 4300 m after 6 days at 2200 m. Aviat
Space Environ Med 2009; 80:955-61.

26. Beidleman BA, Muza SR, Fulco CS, Cymerman A, Sawka MN, Lewis SF,
Skrinar GS. Seven intermittent exposures to altitude improves exercise performance at
4300 m. Med Sci Sports Exerc 2008; 40:141-8.

27.  Tipton M. A case for combined environmental stressor studies. Extrem Physiol
Med 2012; 1:7.

28.  Hiestand WA, Stemler FW, Jasper RL. Increased anoxic resistance resulting from
short period heat adaptation. Proc Soc Exp Biol Med 1955; 88:94-5.

29. Heled Y, Peled A, Yanovich R, Shargal E, Pilz-Burstein R, Epstein Y, Moran DS.
Heat acclimation and performance in hypoxic conditions. Aviat Space Environ Med
2012; 83:649-53.

30.  Sawka MN, Pandolf KB, Avellini BA, Shapiro Y. Does heat acclimation lower
the rate of metabolism elicited by muscular exercise? Aviation Space and Environmental
Medicine 1983; 54:27-31.

31.  Shvartz E, Shapiro Y, Magazanik A, Meroz A, Birnfeld H, Mechtinger A,
Shibolet S. Heat acclimation, physical fitness, and responses to exercise in temperate and
hot environments. J Appl Physiol Respir Environ Exerc Physiol 1977; 43:678-83.

32.  Yamaguchi T, Suzuki T, Arai H, Tanabe S, Atomi Y. Continuous mild heat stress
induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow.
Am J Physiol Cell Physiol 2010; 298:C140-8.

33.  Liu CT, Brooks GA. Mild heat stress induces mitochondrial biogenesis in C2C12
myotubes. J Appl Physiol (1985) 2012; 112:354-61.

34. Kobayashi T, Goto K, Kojima A, Akema T, Uehara K, Aoki H, Sugiura T, Ohira
Y, Yoshioka T. Possible role of calcineurin in heating-related increase of rat muscle
mass. Biochem Biophys Res Commun 2005; 331:1301-9.

35.  White AC, Salgado RM, Schneider S, Loeppky JA, Astorino TA, Mermier CM.
Does heat acclimation improve exercise capacity at altitude? A cross-tolerance model. Int
J Sports Med 2014.

www.manaraa.com



40

36. Salgado RM, White AC, Schneider SM, Mermier CM. A novel mechanism for
cross-adaptation between heat and altitude acclimation: The role of heat shock protein 90.
Physiology Journal 2014; 2014:12.

37.  Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated
altitude, 914 to 2286 meters. Med Sci Sports Exerc 1982; 14:36-40.

38. Dill DB, Myhre G, Phillips EE, Jr., Brown DK. Work capacity in acute exposures
to altitude. J Appl Physiol 1966; 21:1168-76.

39.  Webhrlin JP, Hallen J. Linear decrease in .VO2max and performance with
increasing altitude in endurance athletes. Eur J Appl Physiol 2006; 96:404-12.

40. Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise
performance at altitude. Aviat Space Environ Med 1998; 69:793-801.

41. Levine BD, Stray-Gundersen J, Mehta RD. Effect of altitude on football
performance. Scand J Med Sci Sports 2008; 18 Suppl 1:76-84.

42. Maher JT, Jones LG, Hartley LH. Effects of high-altitude exposure on
submaximal endurance capacity of men. J Appl Physiol 1974; 37:895-8.

43. Bender PR, Groves BM, McCullough RE, McCullough RG, Huang SY, Hamilton
AJ, Wagner PD, Cymerman A, Reeves JT. Oxygen transport to exercising leg in chronic
hypoxia. J Appl Physiol (1985) 1988; 65:2592-7.

44.  Lundby C, Van Hall G. Substrate utilization in sea level residents during exercise
in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiol Scand
2002; 176:195-201.

45, MacDonald MJ, Green HJ, Naylor HL, Otto C, Hughson RL. Reduced oxygen
uptake during steady state exercise after 21-day mountain climbing expedition to 6,194
m. Can J Appl Physiol 2001; 26:143-56.

46. Marconi C, Marzorati M, Sciuto D, Ferri A, Cerretelli P. Economy of locomotion
in high-altitude Tibetan migrants exposed to normoxia. J Physiol 2005; 569:667-75.

47. Matheson GO, Allen PS, Ellinger DC, Hanstock CC, Gheorghiu D, McKenzie
DC, Stanley C, Parkhouse WS, Hochachka PW. Skeletal muscle metabolism and work
capacity: a 31P-NMR study of Andean natives and lowlanders. J Appl Physiol (1985)
1991; 70:1963-76.

48.  Hochachka PW, Stanley C, Matheson GO, McKenzie DC, Allen PS, Parkhouse
WS. Metabolic and work efficiencies during exercise in Andean natives. J Appl Physiol
(1985) 1991; 70:1720-30.

49, Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke
K, Martin DS, Ferguson-Smith AC, Montgomery HE, et al. Acclimatization of skeletal
muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J
2012; 26:1431-41.

50.  Tatterson AJ, Hahn AG, Martin DT, Febbraio MA. Effects of heat stress on
physiological responses and exercise performance in elite cyclists. J Sci Med Sport 2000;
3:186-93.

51.  Parkin JM, Carey MF, Zhao S, Febbraio MA. Effect of ambient temperature on
human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol
(1985) 1999; 86:902-8.

52. Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to
perform prolonged cycle exercise in man. Med Sci Sports Exerc 1997; 29:1240-9.

www.manaraa.com



41

53. Sawka MN, Young AJ, Cadarette BS, Levine L, Pandolf KB. Influence of heat
stress and acclimation on maximal aerobic power. Eur J Appl Physiol Occup Physiol
1985; 53:294-8.

54.  Johnson JM. Exercise in a hot environment: the skin circulation. Scand J Med Sci
Sports 2010; 20 Suppl 3:29-39.

55. Lorenzo S, Halliwill JR, Sawka MN, Minson CT. Heat acclimation improves
exercise performance. J Appl Physiol (1985) 2010; 109:1140-7.

56. Fox RH, Goldsmith R, Hampton IF, Lewis HE. The Nature of the Increase in
Sweating Capacity Produced by Heat Acclimatization. J Physiol 1964; 171:368-76.

57.  Young AJ, Sawka MN, Levine L, Cadarette BS, Pandolf KB. Skeletal muscle
metabolism during exercise is influenced by heat acclimation. J Appl Physiol (1985)
1985; 59:1929-35.

58.  Gisolfi CV. Work-heat tolerance derived from interval training. J Appl Physiol
1973; 35:349-54.

59. Robinson S, Turrell ES, Belding S, NHorvath SM. Rapid acclimatization to work
in hot climates. American Journal of Physiology 1943; 1140:168-76.

60.  Jooste PL, Strydom NB. Improved mechanical efficiency derived from heat
acclimatization. South African journal for research in sport, physical education and
recreation 1979; 2:45-53.

61. Eichna LW, Park CR, Nelson N, Horvath SM, Palmes ED. Thermal regulation
during acclimatization in a hot, dry (desert type) environment. Am J Physiol 1950;
163:585-97.

62.  Strydom NB, Wyndham CH, Williams CG, Morrison JF, Bredell GA, Benade AJ,
Von Rahden M. Acclimatization to humid heat and the role of physical conditioning. J
Appl Physiol 1966; 21:636-42.

63.  Piwonka RW, Robinson S. Acclimatization of highly trained men to work in
severe heat. J Appl Physiol 1967; 22:9-12.

64.  Wyndham CH, Rogers GG, Senay LC, Mitchell D. Acclimization in a hot, humid
environment: cardiovascular adjustments. J Appl Physiol 1976; 40:779-85.

65.  Saltin B, Larsen H, Terrados N, Bangsbo J, Bak T, Kim CK, Svedenhag J, Rolf
CJ. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and
senior runners compared with Scandinavian runners. Scand J Med Sci Sports 1995;
5:209-21.

66. Lucia A, Esteve-Lanao J, Olivan J, Gomez-Gallego F, San Juan AF, Santiago C,
Perez M, Chamorro-Vina C, Foster C. Physiological characteristics of the best Eritrean
runners-exceptional running economy. Appl Physiol Nutr Metab 2006; 31:530-40.

67.  Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the
percentage of type | muscle fibers. Med Sci Sports Exerc 1992; 24:782-8.

68. Horowitz JF, Sidossis LS, Coyle EF. High efficiency of type I muscle fibers
improves performance. Int J Sports Med 1994; 15:152-7.

69.  Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin
P, Giacobino JP. Uncoupling protein-3: a new member of the mitochondrial carrier
family with tissue-specific expression. FEBS Lett 1997; 408:39-42.

70. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a
chemi-osmotic type of mechanism. Nature 1961; 191:144-8.

www.manaraa.com



42

71.  Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A,
Wade J, Mootha V, Cortright R, et al. Energy metabolism in uncoupling protein 3 gene
knockout mice. J Biol Chem 2000; 275:16258-66.

72.  Schrauwen P, Troost FJ, Xia J, Ravussin E, Saris WH. Skeletal muscle UCP2 and
UCP3 expression in trained and untrained male subjects. Int J Obes Relat Metab Disord
1999; 23:966-72.

73. Fernstrom M, Tonkonogi M, Sahlin K. Effects of acute and chronic endurance
exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 2004;
554:755-63.

74. Russell A, Wadley G, Snow R, Giacobino JP, Muzzin P, Garnham A, Cameron-
Smith D. Slow component of [V]O(2) kinetics: the effect of training status, fibre type,
UCP3 mRNA and citrate synthase activity. Int J Obes Relat Metab Disord 2002; 26:157-
64.

75.  Schrauwen P, Westerterp-Plantenga MS, Kornips E, Schaart G, van Marken
Lichtenbelt WD. The effect of mild cold exposure on UCP3 mRNA expression and
UCP3 protein content in humans. Int J Obes Relat Metab Disord 2002; 26:450-7.

76. Simonyan RA, Jimenez M, Ceddia RB, Giacobino JP, Muzzin P, Skulachev VP.
Cold-induced changes in the energy coupling and the UCP3 level in rodent skeletal
muscles. Biochim Biophys Acta 2001; 1505:271-9.

77. Mujahid A, Sato K, Akiba Y, Toyomizu M. Acute heat stress stimulates
mitochondrial superoxide production in broiler skeletal muscle, possibly via
downregulation of uncoupling protein content. Poult Sci 2006; 85:1259-65.

78.  Slivka DR, Dumke CL, Tucker TJ, Cuddy JS, Ruby B. Human mRNA response
to exercise and temperature. Int J Sports Med 2012; 33:94-100.

79.  Dumke CL, Slivka DR, Cuddy JS, Hailes WS, Ruby BC. Skeletal muscle
metabolic gene response to carbohydrate feeding during exercise in the heat. J Int Soc
Sports Nutr 2013; 10:40.

80.  Schlagowski Al, Singh F, Charles AL, Gali Ramamoorthy T, Favret F, Piquard F,
Geny B, Zoll J. Mitochondrial uncoupling reduces exercise capacity despite several
skeletal muscle metabolic adaptations. J Appl Physiol (1985) 2014; 116:364-75.

81. Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle
hypertrophy. J Biol Chem 1999; 274:21908-12.

82.  vander Poel C, Stephenson DG. Effects of elevated physiological temperatures
on sarcoplasmic reticulum function in mechanically skinned muscle fibers of the rat. Am
J Physiol Cell Physiol 2007; 293:C133-41.

83. Baar K. Involvement of PPAR gamma co-activator-1, nuclear respiratory factors
1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc
2004; 63:269-73.

84. Roberts MF, Wenger CB, Stolwijk JA, Nadel ER. Skin blood flow and sweating
changes following exercise training and heat acclimation. J Appl Physiol Respir Environ
Exerc Physiol 1977; 43:133-7.

www.manaraa.com



43

Quter Mitochondrial Membrane

H+ H+ H+ H+ " H+ i
H+ + +
He H+ bk H+ H+ i H+

{ Economy

& Efficiency T Uncoupling of

Oxidative

H+

H
o _ Phosphorylation\ H+ {‘H"L H+
?* - M f H+ Leaking

ATP|Synthase e
| ucp3 || ucp3 | ] ucp3 [
NADH FADH2
ADP + Pi
NAD++H+  FADH + H+ H20
ATP

Figure 1 lllustrates that UCP3 on the inner mitochondrial membrane - o
allows for H+ leak from the inner membranous space which decreases the Inner Mitochondrial Membrane
concentration gradient. This leads to an increase in uncoupling of the

oxidative phosphorylation leading to reduced economy and efficiency.

www.manharaa.com




44

Quter Mitochondrial Membrane

H+ + H+ ol
H+HJr H+ H+H+ H+ Hf H+ B H+  H+ H+
H+ H+ H+ H+ He s H+  H+
H+ H+

f Economy

J Uncoupling of
& Efficiency Ring

Oxidative

H+
Phosphorylation H+ l

T* He M i* { H+ Leaking
ATP|Synthase o
— 1

I UCP3 A

NADH FADH2

ADP + Pi

+
NAD++H+  FADH + H+ H20 H

Figure 2 Illustrates that heat acclimation reduces UCP3 on the inner ATP

mitochondrial membrane. This reduces H+ leak from the inner

membranous space to the matrix which increases the concentration . .

gradient. This leads to an improved ATP coupling of the oxidative Inner Mitochondrial Membrane
phosphorylation leading to improved economy and efficiency. .

www.manharaa.com




45

CHAPTER 3
RESEARCH MANUSCRIPT

This chapter presents a research manuscript, entitled “The effects of ten days of
heat acclimation on submaximal exercise economy and efficiency at 1,600 and 4,350 m.”
This manuscript will be submitted to the European Journal of Applied Physiology. It is
authored by Roy M. Salgado, Ailish C. White, Roger A. Vaughan, James J. McCormick,
Nicholas P. Gannon, Trisha A. Vandusseldorp, Suzanne M. Schneider, Daryl L. Parker,
Len R. Kravitz and Christine M. Mermier. The manuscript follows the formatting and

style guidelines of the journal. References are provided at the end of the chapter.
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Abstract

Heat acclimation is known to increase exercise economy. Previous examinations
suggest heat acclimation may preserve performance at altitude. This study examined the
effect of using heat acclimation as a cross environmental stressor to improve exercise
economy and efficiency during acute exercise at altitude. Eight trained males (VOzpeax:
53.3 £ 6.7 ml/kg/min) performed maximal exercise tests, submaximal exercise bouts, and
heat tolerance testing in a temperate environment (21°C) at 1600 m and 4350 m before
and after a 10-day heat acclimation (40°C and 20% RH) on a cycle ergometer (~43%
peak power). To investigate heat stress mechanisms, C2C12 myocytes were heat stressed
for 24 hours (40°C, 5% CO,). Heat acclimation did not alter VOpeax at 1600 m (53.3 +
6.7 vs. 53.7 = 3.7 ml/kg/min, p > 0.05) or 4350 m (45.3 + 4.1 versus 45.9 + 3.4
ml/kg/min, p > 0.05). Heat acclimation increased exercise economy by 1.6% and 2% in
the low intensity and high intensity exercise, respectively at 1600 m with only a 0.48%
increase at 4350 m. In the cell study, heat stress significantly reduced UCP3 expression,
reduced mitochondrial uncoupling (71.1% *1.2%) and suppressed basal and peak
oxidative metabolism (75.5% + 4.9% and 64.4% + 5.9%, respectively) compared to
control. Heat stress also significantly increased PGC-1a, NRF1 and TFAM leading to
increased mitochondrial content. These data demonstrate that while heat stress reduces
UCP3 expression, thereby reducing uncoupling and leading to enhanced mitochondrial
efficiency, these adaptations are not observed in the whole body. At this time, | am
unable definitively promote the use of heat acclimation as a cross environmental stressor
for acute exercise at altitude.

Keywords: Altitude, Hypoxia, Heat tolerance, Exercise Capacity, Skeletal muscle
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Background

It is well established that exercise capacity is impaired during acute heat stress
(Gonzalez-Alonso et al. 1999; Tatterson et al. 2000; Parkin et al. 1999). After heat
acclimation (HA), heat tolerance is improved during exercise resulting in reduced heart
rate (Sawka et al. 1983) (HR), enhanced sweat rate (Fox et al. 1964), increased cutaneous
blood flow (Johnson 2010), plasma volume expansion (Lorenzo et al. 2010; Senay et al.
1976) and improved maximal aerobic capacity (Lorenzo et al. 2010) (VOzmax). In
addition, HA causes significant reductions in oxygen consumption (-4-7%) for a given
work-rate (Sawka et al. 1983; Young et al. 1985; Jooste and Strydom 1979), also termed
exercise economy, during exercise in both hot and thermoneutral environments.

The mechanisms causing enhanced exercise economy after HA have not been
fully elucidated. Some researchers have suggested that in trained individuals, improved
economy and muscle efficiency is likely due to high numbers of type | muscle fibers
(Coyle et al. 1992; Horowitz et al. 1994) and that after HA there is an improvement in
muscular efficiency (Sawka et al. 1983) likely by enhanced P/O ratio (ATP formation per
oxygen used) (Whipp and Wasserman 1969). In C2C12 myotubes, heat stress (40°C) has
been reported to induce increases in peroxisome proliferator-activated receptor y
coactivator 1 alpha (PGC-1a), complex I, 11, 111, and 1V proteins in the electron transport
chain and ATP synthase, thus promoting increased mitochondrial biogenesis (Liu and
Brooks 2012) compared to control treatment (37°C). It is unclear to what extent increases
in mitochondrial biogenesis from heat stress improve exercise economy and efficiency.

Another possible explanation is that heat stress alters uncoupling protein 3

(UCP3), skeletal muscle-specific proteins, which are located throughout the inter-
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mitochondrial membrane. Uncoupling protein 3 allows for leakage of H* from the
intermembranous space to the matrix which alters the coupling of electron transport and
oxidative phosphorylation thereby improving economy and efficiency. Schlagowski et al.
(Schlagowski et al. 2014) reported significant decreases (-11%) in running speed (42.4 +
1.7 cm/sec in those treated with 2-4 dinitrophenol (DNP) vs. 47.6 = 1.5 cm/sec in control)
and impaired running economy (3.1 = 0.1 ml/kg/min in control vs. 3.8 £ 0.2 ml/kg/min)
in mice treated with DNP, a drug that increases H* leakage and increases mitochondrial
uncoupling. An important finding of their study was that increasing oxidative
phosphorylation uncoupling impaired running economy and reduced exercise capacity.
Following cold exposure there is an increase in UCP3 in humans (Schrauwen et
al. 2002), leading to greater uncoupling with reduced mitochondrial efficiency. This
process is advantageous in cold environments because it increases thermogenesis leading
to higher core temperature and improved thermoregulation. Because cold exposure
increases UCP3 and promotes thermogenesis with simultaneous reduction in
mitochondrial efficiency, it is plausible that chronic heat stress could reduce UCP3
expression leading to reduced dissipation and mitochondrial efficiency. However these
hypotheses have yet to be demonstrated. Investigators have reported that heat stressed
broiler chickens had reductions in avUCP (73% homology to mammalian UCP3) mRNA
and protein compared to non-heat stressed animals (Mujahid et al. 2006). Because the
aim of their study was not to investigate the metabolic changes from heat stress, it is still
unclear if heat stress reduces UCP3 expression and lowers exercise economy and muscle

efficiency.

www.manaraa.com



o1

A limiting factor during acute exercise at high altitude is impaired oxygen
transport from the ambient air to the muscles resulting in a reduction in submaximal, and
maximal exercise capacity (Robergs et al. 1998) and cycling time-trial performance
(Beidleman et al. 2003). Even though VO,nax IS a strong predictor of performance;
economy and efficiency also contribute to exercise performance (Schlagowski et al.
2014; Saunders et al. 2004; Di Prampero et al. 1993). In well trained individuals,
economy explained 65% of the variation in a 10-km race in those with similar VO,max
(Conley and Krahenbuhl 1980). Additionally, lower economy and efficiency
compensated for reduced VO,max in world-class professional cyclists (Lucia et al. 2002),
implicating the importance of these two variables in competitive endurance events.

The importance of enhanced economy and efficiency during exercise at altitude is
observed in some individuals. Latshang et al. (Latshang et al. 2013) reported that in
mountaineers, lower submaximal VO, was a significant predictor of perception of effort
during two summit attempts. Further, it has been suggested that Andean high-altitude
natives have improved economy and muscle efficiency during exercise at altitude
compared to sea-level natives even with lower VO,max, Which may explain their high
exercise tolerance at altitude.

The use of a cross environmental stressor (CES) model of heat acclimation and
acute altitude exposure has been investigated. Heled et al. (Heled et al. 2012) reported
that after 12 days of heat acclimation (40°C temperature and 40% relative humidity) at
sea-level, SaO, during exercise at a simulated altitude of 2430 m (15.6% FIO,) was
significantly improved (86.5 = 2% versus 88 £ 2% from pre-heat acclimation to post-heat

acclimation, respectively), and HR was significantly lower at onset of blood lactate An
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increase in Sa0O, may indicate that HA may improve oxygen transport. A major limitation
to their study was that metabolic measurement such as oxygen consumption and
ventilation (VE) during submaximal exercise at altitude was not measured, however the
authors suggested that HA acts as a preconditioning CES which lowers metabolic rate
and may be beneficial to improving economy and efficiency at altitude.

The purpose of this study was to determine whether 10 days of exercising in the
heat can increase submaximal exercise economy and efficiency both at 1600 m and 4350
m in trained individuals to determine its use as CES, and to investigate possible

mechanisms using a muscle cell model.

Materials and Methods

Subjects

Eight trained males were recruited from the local community. The subjects were cyclist
and runners averaging 5.9 hours/wk of moderate and 2.6 hours/wk of vigorous exercise
within the last year. All subjects met the following inclusion criteria: 1) 18 — 44 years of
age; 2) maximal oxygen consumption (VOazmax) classified as > 80™ percentile for their age
(ACSM's Guidelines for Exercise Testing and Prescription 2014); and 3) residing at
approximately 1600 m within the last six months. Subjects were stratified for
cardiovascular risk factors according to the American College Sports Medicine (ACSM)
(ACSM's Guidelines for Exercise Testing and Prescription 2014) and were excluded if
they were considered: 1) moderate or high risk; 2) have had a previous heat injury
(heatstroke and/or heat exhaustion; or 3) spent time at altitudes > 1600 m within the past

six months. Written informed consent was obtained prior to participation in the study.
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This study was approved by the Institutional Review Board of the University of New

Mexico.

Study Design

This was a 10-day heat acclimation (HA) study conducted in Albuquerque, NM during
the months of February 2014 to June 2014 at which time the average high temperature
was 23.6°C. Prior to the HA trials, all subjects reported to the exercise physiology
laboratory (1600 m) at the same time of day to complete all preliminary testing and to
collect baseline measurements. All subjects were instructed to refrain from strenuous
exercise (heavy lower-body resistance exercise or high intensity intervals), caffeine, and
alcohol consumption, and to fast at least 10 hours prior to all testing. Pre-test compliance
was verified with a written physical activity/dietary log provided to subjects during each
visit. The baseline testing, conducted on separate days, included one heat tolerance test
(HTT), maximal graded exercise tests (GXT) to determine VO2max and intensity during
the submaximal exercise bouts (SE) at 1600 m and 4350 m (Figure 1). The VO,max and
SE tests were conducted at both 1600 m and 4350 m and were separated by at least 24
hrs. High altitude (hypobaric hypoxia, 4350 m) was simulated using an altitude chamber
located at the University of New Mexico. The custom built chamber is an air tight system
that is 6.1 m long and 2.4 m diameter. A constant flow rate of outside air was used to
ventilate the altitude chamber. At least one week after all baseline testing was complete,
subjects participated in a 10-day HA protocol. Since the exercise intensity of the heat
trials were dependent on the workload (Watts) below the ventilation threshold calculated

from the VO.nax, the order of exercise trials was not randomized. No more than two days
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after completion of HA, VO;max and SE at 1600 m and 4350 m and HTT were retested

with each test separated by at least 24 hours.

Tests and Measurements

Prior to any testing, resting heart rate (Polar Electro, model FS1, Woodbury, NY) and
blood pressure were measured while the subject was in a seated position for five minutes.
Three site skinfolds (chest, abdomen and thigh) (Beta Technology Incorporated, Lange
Skinfold Caliper, Cambridge, MD) were measured twice in rotational order by the same
trained technician and averaged to estimate percent body fat (Jackson and Pollock 1978).
Nude body weight was recorded during each visit using an electronic scale (Seca, Model

2531, Danville, VA).

Maximal graded exercise test and determination of exercise workload

Each subject performed a GXT to determine VO;max at 1600 m and 4350 m in a
temperate environment (21°C) using a staged protocol on an electronically-braked cycle
ergometer (Velotron DynaFit Pro, RacerMate, Seattle, WA) on separate days. This cycle
ergometer was used for all GXT and SE bouts. The fore, aft and seat height position were
measured during the initial testing, and were replicated for all testing. The warm-up
consisted of a self-selected resistance for two minutes. The maximal GXT began at 70
Watts (W) and was increased 35 W each minute until volitional fatigue. Maximal oxygen
consumption was determined using established criteria (Astorino 2009), and if criteria
were not met it was recorded as VOgpeax. Peak power output (PPO) was defined as the

highest workload (W) from the last completed stage plus the fraction of time spent in the

www.manaraa.com



55

uncompleted final workload multiplied by 35 W (Stepto et al. 1999). Ventilatory
threshold 1 (VT1) was determined using the criteria of an increase in VE/VO, with no
change in VE/VCO; (Davis 1985). To determine the exercise intensity during all heat
trials, 75 W was subtracted from the workload at VT, from the GXT (corrected
workload). The workload was corrected so that subjects exercised at a power output that
would elicit a submaximal VO, below VT, (Bradley 2012) (unpublished data) which has
been reported not elicit a training response (Londeree 1997; Sady et al. 1980). Expired air
was collected continuously and analyzed to determine VO, consumption, CO, production
and respiratory exchange ratio (RER) using a commercially available metabolic system
(ParvoMedics True One 2400, Sandy Utah). All data were processed using a 30-second
average. Before all testing, the metabolic cart was calibrated per the manufacturer’s
recommendations. The flow rate of the pneumotach was recalibrated via a flow
calibration reconstruction for all high altitude trials (4350 m) to account for the reduced
air density within the hypobaric chamber. Gas analyzers were calibrated to known gas
concentrations (16.01% O, and 4.00% CO,), and the pneumotach was calibrated using 3-
liter syringe at varying flow rates.

Submaximal exercise

The submaximal exercise bouts were performed at 1600 m and 4350 m in a temperate
environment and were separated from the GXT by at least 24 hrs. Subjects warmed-up
for 10 minutes at a self-selected workload which was then increased to 30% (120 W and
95W at 1600 m and 4350 m, respectively, equating to ~42% VOgpeax OF low intensity
(L1)) and 20% (137 W and 108 W at 1600 m and 4350 m, respectively, equating to ~48%

VOgzpeak O high intensity (HI)) below the corrected workload from their GXT. These
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workloads were selected to avoid the VO, slow component (Poole et al. 1994) and ensure
that all subjects reached steady-state, particularly during the submaximal exercise at 4350
m. Each subject exercised for 10 minutes (Schrauwen et al. 1999), continuously and was
asked to maintain a cadence close to 80 rpm. Economy and gross efficiency were
calculated for each steady state workload using the following formula:

Economy (W/LO,) = Power output (W)/VO, (L/min) (Moseley and Jeukendrup 2001)

and
Gross efficiency (%) = (Work Rate (W))/Energy Expended (J/sec) x 100) (Moseley and
Jeukendrup 2001)

Expired gases were collected using a metabolic system during the last five minutes of

each 10-minute exercise bout. All SE data were processed using a one minute average.

Heat Tolerance Test

The HTT was performed in a heat chamber (1600 m) consisting of cycling (Monark,
Ergomedic 828E, Vansbro, Dalarna) for 45 minutes at a temperature of 40°C and 20%
relative humidity. All exercise bouts during the HTT and 10 day HA were performed
using this cycle ergometer at the corrected workload (mean of 158 W, 55% VOgpeak).
Prior to the HTT and after voiding their bladder, nude body weight was recorded using an
electronic scale. Urine samples were collected to determine hydration status via urine
specific gravity (REF312ATC, General Tools & Instruments, New York City, NY).
Euhydration was classified as < 1.020 g/mL (Cheuvront et al. 2006). If subjects were not
euhydrated they were asked to consume 500 mL of water and hydration status was

reassessed after 20-30 minutes. | have found that this time frame is sufficient for subjects
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to become euhydrated. Subjects were then asked to self-insert a rectal thermistor (Model
4TH, Telly Thermometer, Yellow Springs, Ohio) to a minimum of 10 cm past the anal
sphincter (Kuennen et al. 2011). Skin thermistors (YSI 409B, Thermistor Probe, Dayton,
Ohio) were placed uncovered on the chest, arm, and thigh to calculate mean skin
temperature (Tsy) using an established equation: (Ts = 0.43 Tehest + 0.25 Tam + 0.32
Tuwign) (Roberts et al. 1977). Rectal and skin thermistors were interfaced to an analog data
logger (Model 44TA, Telly Thermometer,Yellow Springs, Ohio) to assess rectal (T.) and
(Tsk) temperature. HR was assessed continuously during the HTT and all variables
including thermal sensation were recorded every five minutes. The HTT was terminated
if the subject 1) requested to stop, 2) was unable to sustain the predetermined workload,
or 3) the subject reached a T, of > 40°C. If the subjects failed to complete the entire 45
min HTT, they were asked to report to the laboratory one week later in order to perform a

follow-up HTT.

Heat Acclimation

Subjects completed 10 consecutive days of a HA protocol which consisted of cycling in a
heat chamber at a temperature of 40°C and 20% relative humidity. Heat acclimation was
induced using a traditional heat acclimation protocol, where subjects exercised at the
corrected workload from the GXT for two 50-minute bouts with 10 minutes of seated rest
between each bout (Sawka et al. 1983). Core temperature and HR were monitored
continuously and recorded every five minutes. Subjects were provided with room
temperature water and allowed to drink ad libitum. Urine output was measured. Nude

body weight was recorded before and after each trial to determine whole body sweat rate
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(Buono et al. 2009) after correcting for urine output and water intake. The HA
termination criteria included: 1) completion of the 100 minutes of cycling; 2) T, > 40°C
or; 3) subject requested to stop. If subjects were unable to complete the entire 100
minutes for any given HA trial, the completed time was recorded and they were asked to
continue reporting to the laboratory as scheduled until they finished the 10 day HA

protocol.

Blood measurements

On day one and day 10 prior to beginning the HA protocol, 10 mL of venous blood was
drawn free flowing from the antecubital vein. In order to control for shifts in fluid
compartments, subjects sat in an upright position with their arm at heart level for 20
minutes prior to blood sample collection (Harrison 1985). Hematocrit and hemoglobin
were measured and used to calculate the change in plasma volume from day one to day
10 of HA (Dill and Costill 1974). Hematocrit was determined in triplicate; where blood
was filled into heparinized capillary tubes and centrifuged (Unico, Model C-MH30,
Dayton, NJ) at 12,000 rpm for five minutes. The percentage of red cells to total volume
were measured and multiplied by .96 to account for red cells in the plasma. Hemoglobin
concentration was assayed with a hematology analyzer (Beckman Coulter, Model LH750,

Brea, CA).
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Figure 1 Schematic of intervention. All pre and posting testing were separated by at least 24-48 hours
with 10 days of continuous exercise in the heat (2 hours/day at ~55% VOpeax). *SE: Submaximal
exercise, Het: Hematocrit, Hb: hemoglobin, HTT: Heat tolerance test, VO,n,x: maximal graded
exercise test

Cell Model

Cell Culture: Murine myocytes (C2C12) were purchased from ATCC (Manassas, VA)
and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 4500mg/L
glucose and supplemented with 10% heat-inactivated fetal bovine serum (FBS) and
100U/mL penicillin/streptomycin, in a humidified 5% CO, atmosphere at 37°C (standard
conditions). Following overnight seeding, cells with either incubated for 24 hours under

standard conditions (control) or at 5% CO, atmosphere at 40°C (heat stressed).

www.manaraa.com



60

Metabolic Assay: Cells were seeded overnight in 24-well culture plate from SeaHorse
Bioscience (Billerica, MA) at a density of 5 x 10° cells/well, and incubated either under
standard (n = 22 wells for control) or heat stressed conditions (n = 22 wells heat stress).
Following 24 hour incubation, culture media was removed and replaced with XF Assay
Media from SeaHorse Bioscience (Billerica, MA) containing 4500mg/L glucose free of
CO; and briefly incubated at 37°C. Per manufacturers’ protocol, SeaHorse injection ports
were loaded with oligomycin, an inhibitor of ATP synthase which induces maximal
glycolytic metabolism and reveals endogenous proton leak (mitochondrial uncoupling) at
a final concentration 1.0 uM. Oligomycin addition was followed by the addition of
carbonyl cyanide p-[trifluoromethoxy]-phenyl-hydrazone (FCCP), an uncoupler of
electron transport that induces peak oxygen consumption (an indirect indicator of peak
oxidative metabolism) at final concentration 1.25 pM. Rotenone was then added in 1.0
MM final concentration to reveal non-mitochondrial respiration and end the metabolic
reactions (Wikstrom et al. 2012; Giulivi et al. 2008). Extracellular acidification, an
indirect measure of glycolytic capacity, and oxygen consumption, a measure of oxidative
metabolism was measured using the SeaHorse XF24 Extracellular Analyzer from
SeaHorse Bioscience (Billerica, MA). SeaHorse XF24 Extracellular Analyzer was run
using 8 minute cyclic protocol commands (mix for 3 minutes, let stand 2 minutes, and
measure for 3 minutes) in triplicate as previously performed (Vaughan et al. 2013).
Cellular ATP Content: Cells were seeded overnight in a 6-well plate (n = 6 control and n
= 6 heat stress) at density 1 x 10° cells/well and heat stressed as described above for 24
hours. Cells were lysed in 1% CHAPS lysis buffer from Chemicon (Billerica, MA) in

PBS with Ca** and MG?* and the ATP-containing supernatant was recovered. Samples
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were allocated into a 96-well plate with a 1:1 dilution of ATP Bioluminescence Reagent
from Sigma (St. Louis, MO) with a 50 pM final volume and luminescence was measured
and normalized to serial dilutions of ATP. ATP concentrations were normalized to cell
density determined through hemocytometey measured by staining cells with trypan blue
from Sigma (St Louis, MO) with cell density estimated using a Countess™™ cell
quantification system from Invitrogen (Carlsbad, CA).

Quantitative Real Time Polymerase Chain Reaction (QRT-PCR): Following 24 hour
incubation under standard or heat stressed conditions, total RNA was extracted using
RNeasy Kit from Qiagen (Valencia, CA) and cDNA was synthesized from using the
Retroscript™ RT kit from Ambion (Austin, TX) according to manufacturer’s
instructions. PCR primers were designed using Primer Express software from Invitrogen
(Carlsbad, CA) and synthesized by Integrated DNA Technologies (Coralville, IA). qRT-
PCR were done in triplicates for each condition (n = 3 wells for control and n = 3 wells
for heat stress). Amplification of PGC-1a, nuclear respiratory factor 1 (NRF1),
mitochondrial transcription factor A (TFAM), glucose transporter 4 (GLUT4), and
mitochondrial uncoupling protein 3 (UCP3) were normalized to the housekeeping gene,
TATA Binding Protein (TBP). Table 1 summarizes the forward and reverse primers of
each gene. qRT-PCR reactions were performed in triplicate using the LightCycler 480
real-time PCR system from Roche Applied Science, (Indianapolis, IN). SYBR Green
based PCR was performed in triplicate with final primer concentrations at 10 uM in a
total volume of 30 pul. The following cycling parameters were used: 95°C for 10 minutes

followed by 45 cycles of 95°C for 15 seconds, and 60°C for one minute. Relative
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expression levels were determined by the AACp method and compared to the lowest

expressing group as previously described (Pfaffl 2001).

Table 1 Summary of qRT-PCR primers from Integrated DNA Technologies

(Coralville, 1A). Abbreviations: Glucose transporter 4 (GLUT4), nuclear

respiratory factor 1 (NRF1), peroxisome proliferator-activated receptor y
coactivator 1 alpha (PGC-1a), mitochondrial transcription factor A (TFAM), TATA
binding protein (TBP), and mitochondrial uncoupling protein 3 (UCP3).

Primer Forward Sequence Reverse Sequence
Name
GLUT 5-GGAGGGAGCCTTTGGTATTT- 5 -CAGGCGAGGACACTCATCTT-
4 3 3
, 5
NRF1 g ACCCTCAGTCTCACGACTAT: G AACACTCCTCAGACCCTTAAC-
3I
PGC- O >
1 GACAATCCCGAAGACACTACAG AGAGAGGAGAGAGAGAGAGAG
¢ 3 A-3’
5’- 50
TBP 3C’S,GGATTCAGGAAGACCACATA- CCTCACCAACTGTACCATCAG-3’
5’- 5’-
TFAM GAAGGGAATGGGAAAGGTAGA ACAGGACATGGAAAGCAGATTA
G-3' -3'
UCP3 5’- 5’-GCATCCATAGTCCCTCTGTAT-

CAGATCCTGCTGCTACCTAAT-3’

3’

Immunoblotting and Protein Expression: Cells were seeded overnight and incubated

either under standard or heat stressed conditions for 24 hours. Immunoblotting were done

in triplicates for each condition (n = 3 control and n = 3 heat stress). Whole cell lysates

were prepared by harvesting the cells on ice in high salt lysis buffer (25mM Tris base,

8mM MgCI2, ImM DTT, 15% glycerol, 0.1% Triton) supplemented with protease
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inhibitor mix (Sigma, St. Lois MO), followed by incubation on ice for 60 minutes.
Insoluble material was removed by centrifugation at 12,000 rpm for 3 minutes and
protein concentrations were determined by Bradford assay (Protein Assay Dye Reagent
Concentrate, Bio-Rad Laboratories, Hercules, CA). Total protein (40 pg per sample) was
size-separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and electro-transferred to nitrocellulose membranes. After blocking in TBST-5%
milk powder for 1 hour, membranes were probed at 4°C for 24 hours with either an anti-
PGC-1a primary polyclonal antibody from Santa Cruz Biotechnologies (Santa Cruz, CA)
or anti-GLUT4 monoclonal antibody from Abcam (Cambridge, MA) and anti-B-actin
primary monoclonal antibody from Sigma (St. Louis, MO) in TBST-1% milk powder
overnight. Bound antibodies were detected by horseradish peroxidase-conjugated
secondary antibodies from Sigma (St. Louis, MO) and by chemiluminescence using the
ECL Plus Western Blotting Detection kit from GE Healthcare Life Sciences (Little
Chalfont, Buckinghamshire, UK). Signal intensities were obtained by densitometry using
ImageJ software (available from the NIH at http://rsbweb.nih.gov/ij/) by quantifying lane
intensities followed by normalizing PGC-1a and GLUT4 intensity with corresponding [3-
actin.

Flow Cytometry: Cells were seeded in 6-well (n = 6 control and n = 6 heat stress) plates
at a density of 1.0 x 10° cells/well and incubated as described above for 24 hours.
Following incubation, the media was removed and the cells were re-suspended in pre-
warmed media with 200 nM Mitotracker Green from Life Technologies (Carlsbad, CA)
and incubated for 45 minutes in a humidified 5% CO, atmosphere at 37°C. The cells

were pelleted, the media with Mitotracker was removed and the cells were suspended in
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pre-warmed media. Group mean fluorescence was measured using Facscalibur filtering

488 nm.

Statistical analyses

Human Experiment

An a priori analysis using a commercially available software (G*Power, Universitat Kiel,
Germany, version 3.1) with a repeated measures within and between design was used to
determine the sample size needed to find a significant change in submaximal VO,. The
effect size from submaximal VO, was used because improvements in this variable during
exercise at altitude have been associated with improved exercise tolerance at altitude
(Latshang et al. 2013). Using an effect size of 0.98 (Shvartz et al. 1977), alpha level of
0.05 and power of 0.80, a total of six subjects were needed for this investigation and we

were able to recruit eight individuals.

A student’s t-test was used to determine significant differences from pre to post HA on
the following dependent variables: 1) end HR, 2) end T, 3) end thermal sensation and

4) end RPE from day 1 and 10 of HA.

A three-way (environment x time x intensity) ANOVA with repeated measures design
was used to determine whether environment (1600 m vs. 4350 m), time (pre vs. post
acclimation) and intensity ( LI vs. HI) significantly influenced the following dependent
variables: submaximal exercise economy, efficiency, submaximal VO,, ventilation, HR,

Sa0,, RPE (6-20 Borg scale) and RER were used to determine statistical significance.
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Differences in VO.peax and PPO were determined using two-way (environment X time)

ANOVA with repeated measures. Significance was set at p < 0.05.

Cell Experiment

Metabolic measurements, ATP concentration, flow cytometry, protein expression, and
microscopy data were analyzed using student’s t-test. Gene expression was quantified by
relative expression using the AACp method, and analyzed using student’s t-test (Pfaffl
2001). All data are represented as mean * standard deviation (SD). All cell data were
normalized to the control mean (control = 100). All statistical analyses were conducted
using commercially available software (Statistica v10, Statsoft Inc., Tulsa, OK).

Significance was set at p < 0.05.

Results

Human Experiment

Subject physiological characteristics: Eight subjects completed all pre-, 10-day HA and
post- testing protocols. Subject characteristics and aerobic performance before and after
heat acclimation at 1600 m and 4350 m are presented in Table 2. A two-way ANOVA
with repeated measures revealed a significant main effect of environment on VOgymax (p <
0.05) and PPO (p < 0.05) with no significant differences from pre and post HA at 1600 m
and 4350 m (Table 2). Table 3 shows significant decrease in end HR (-15%, p < 0.05),
end T (-1.3%, p < 0.05), end thermal sensation (-19%, p < 0.05) and RPE (-19%, p <

0.05) with no difference in % change in PV (p > 0.05).
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Table 2. Subject description and aerobic performance results before and after heat
acclimation and at 1600 m and 4350 m

Pre HA Post HA
Age (yr) 28 +5.8
Height (cm) 178.46 £ 7.16
Body Weight (kg) 75.3+£7.9 75.3+85
Body fat (%) 8.2+39
1600 m 4350 m
Pre HA Post HA Pre HA Post HA
VOgpeak (ml/kg/min) 53.3%6.7 53.7+3.7 453 +4.1* 459 + 3.4*
Peak Power (W) 362.4+543 3743+415 321.4+47.8* 330.6+44.9*

Values are reported as means + SD for n = 8 subjects. * indicates significantly different between
altitudes 1600 m and 4350 m

Table 3. Mean differences in thermoregulatory responses
between day 1 and day 10 of heat acclimation

Day 1 Day 10
End heart rate (bpm) 161 +17.8 140 + 15.4*
End Tc (°C) 39.2+£0.7 38.7£0.5*
End thermal sensation 7.3+£0.9 6.1 £0.9*
End RPE 15529 13.0+1.1*
A Plasma volume (%) 1.86

Values are reported as means + SD. * indicates significantly
different fromday 1. n=8.

Metabolic responses were not different at 1600 m and 4350 m before and after 10 days of
HA. A three-way ANOVA with repeated measures was used to compare the effects of 10
days of HA on metabolic responses during steady state exercise at 1600 m and 4350 m.
The analysis revealed significant main effects for the following: exercise intensity on

submaximal VO, (Figure 2A) (p = 0.01), environment (Figure 2B) (p = 0.002) and
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exercise intensity on exercise economy (Figure 2B) (p = 0.01), exercise intensity on
efficiency (Figure 3A) (p = 0.02), and environment on RER (Figure 3B) (p = 0.003).
There were no significant differences in metabolic responses from pre to post HA during

exercise at 1600 m (Figure 1A-D) and at 4350 m (Figure 2A-D).
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Figure 2 (A) Submaximal oxygen consumption and (B) Submaximal economy (Economy = Watts /
VO, (L/min) (Moseley and Jeukendrup 2001) pre and post 10 days of HA during exercise at 1600 m
low intensity (LI: 120 W, ~ 42% VOgqeqx) and high intensity (H1: 137 W, ~48% VO a4 and at 4350
m LI (95 W, ~42% VOypear) and HI (108W, ~48% VOqpeq). * indicates significant main effect of
exercise intensity on submaximal VO2 and economy (p < 0.05), # indicates significant main effect of
environment on exercise economy (p < 0.05). No significant differences were observed between pre
and post HA on submaximal oxygen consumption and exercise economy at 1600 m and 4350 m.
Values are reported in mean = SE with n = 8 subjects.
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Figure 3 (A) Gross efficiency pre and (Gross efficiency (%) = (Work Rate (W))/Energy Expended
(J/sec) x 100) (Moseley and Jeukendrup 2001) and (B) Respiratory Exchange Ratio pre and post 10
days of HA during exercise at 1600 m low intensity (LI: 120 W, ~ 42% VOyp.a) and high intensity
(HI: 137 W, ~48% VOypea) and at 4350 m LI (95 W, ~42% VO ) and HI (108W, ~48% VO pear). *
indicates significant main effect of exercise intensity on exercise efficiency (p < 0.05), # indicates
significant main effect of environment on RER (p < 0.05). No significant differences were observed
between pre and post HA on exercise efficiency and respiratory exchange ratio at 1600 m and 4350
m. Values are reported in mean + SE with n = 8 subjects.

Pulmonary responses and perception of effort did not change at 1600 m and 4350 m
before and after 10 days of HA: To determine the effects of HA on ventilation and rating
of perceived exertion, | measured HR, VE, SaO, and RPE at 1600 m and 4350 m (Table
4 and 5). A three-way ANOVA with repeated measures revealed significant main effects
for: exercise intensity on HR (p < 0.05), environment and exercise intensity on VE (p <
0.05), environment and intensity on SaO,, and intensity on RPE (p < 0.05). There were

no significant interactions before and after HA at 1600 and 4350 m on the above

variables.
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Table 4. Mean differences in steady state exercise at 1600 m for HR, VE, Sa0O2, and
RPE before and after 10 days of heat acclimation

1600 m
Pre HA LI Post HA LI Pre HA HI Post HA HI
111.1 + 106.5 + 118.25 +
HR (bpm) 14.6* 11.9* 17.1* 114 + 14.0*
VE (L/min) 30.8 + 8.5*" 30.6 + 7.8*" 34.8 + 10.0*" 35.5 + 8.5*"
Sa0; (%) 936+ 1.8 94.0+1.1 92.9+2.0 93.3+1.3
RPE 10+1.4 10+ 1.6 11+1.1 11+1.8

Values are reported as means = SD with n = 8 subjects * indicates significant main effect of
exercise intensity on heart rate # indicates main effect of exercise intensity on ventilation

Table 5. Mean differences in steady state exercise at 4350 m for HR, VE, Sa0O2, and
RPE before and after 10 days of heat acclimation

4350 m
Pre HA LI Post HA LI Pre HA HI Post HA HI
111.93 + 110.1 + 117.1 +
HR (bpm) 8.1% 11.5% 121.3 + 8.4* 11.4*
VE (L/min) 19 +4.9"* 20.0 + 4.4 22.2+58" 23.1+51"
Sa0, (%) 77.1+4.2 79.3+3.1 76.3+3.3 77.8+2.0
RPE 10+1.8 10+ 1.8 10+1.9 11+15

Values are reported as means + SD with n = 8 subjects * indicates significant main effect of
exercise intensity on heart rate * indicates main effect of environment on ventilation # indicates
main effect of exercise intensity on ventilation

Cell Experiment

Changes in cellular metabolism due to heat stress: To investigate the effects of heat
stress on cultured C2C12 murine myocyte metabolism, | measured oxygen consumption
rate (OCR), an indicator of mitochondrial metabolism following 24 hours of heat stress.
Figure 4A shows that basal oxidative metabolism and peak oxidative metabolism was
significantly reduced (-75.5% * 4.9% and -64.4% = 5.9%, respectively) in myocytes heat

stressed for 24 hours compared with control cells. Mitochondrial H* leak (uncoupling), a
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source of thermogenesis, was reduced in the heat stressed cells (-71.1%, +1.2%) and

accompanied by a significantly reduced UCP3 gene expression (Figure 4B).
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Figure 4 Cellular Metabolism of C2C12 murine myocyte incubated under 37°C (control, n = 22) or
40°C (heat stressed, n = 22) for 24 hours. (A) Basal and peak oxidative metabolism indicated by
oxygen consumption rate (OCR) (B) Endogenous uncoupling revealed by oligomycin treatment of
cells treated as described above and mitochondrial uncoupling protein 3 (UCP3) RNA expression.
Significance was indicated as *, **, and *** indicating p < 0.05, p < 0.01, and p < 0.001 statistical
differences compared to control, respectively.
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Figure 5 Cellular Metabolism of C2C12 murine myocyte incubated under 37°C (control) or 40°C
(heat stressed) for 24 hours. (A) Mitochondrial content indicated by Mitotracker (n = 6) staining
measured by flow cytometry and (B) Mitochondrial efficiency of cells under basal conditions and
oligomycin-induced proton leak (normalized to mitochondrial content).Significance was indicated as
* ** and *** indicating p < 0.05, p < 0.01, and p < 0.001 statistical differences compared to control,
respectively.

To investigate the effects of heat stress on mitochondrial content, | measured
mitochondrial staining following incubation described above. Heat stressed cells
displayed significantly increased mitochondrial staining (+119.9%, +9.2%) compared
with control cells (Figure 5A). To investigate the effects of heat stress, using
mitochondrial staining from flow cytometry measurement, | normalized basal oxidative
metabolism and mitochondrial uncoupling to mitochondrial content. Figure 5B illustrates

that heat stressed cells showed significantly reduced mitochondrial efficiency.
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Figure 3 Gene and Protein Expression of C2C12 murine myocyte incubated under 37°C (control) or
40°C (heat stressed) for 24 hours. (A) Metabolic gene expression (n = 3) of peroxisome proliferator-
activated receptor y coactivator 1 alpha (PGC-1a), nuclear respiratory factor 1 (NRF1),
mitochondrial transcription factor A (TFAM), glucose transporter 4 (GLUT4) were normalized to
the housekeeping gene, TATA Binding Protein (TBP), (B) Protein expression (n = 3) of cells treated
as described above of PGC-1a, heat shock protein 90 (HSP-90), and heat shock protein 72 (HSP-72)
and (C) Representative immunoblots as quantified in B. Significance was indicated as *, **, and ***

indicating p < 0.05, p < 0.01, and p < 0.001 statistical differences compared to control, respectively.

Changes in gene expression due to heat stress: To investigate the effects of heat stress
induced changes in metabolism on gene expression; | measured induction of several
genes for mitochondrial metabolism and biogenesis. Figure 3E shows that heat stressed

cells had significantly increased PGC-1a expression, and downstream targets nuclear
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receptor of factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM) and
GLUT4 expression. To investigate the effects of heat stress on metabolic and heat-stress
related protein expression, | measured expression of PGC-1a, HSP-90 and HSP-72.
Figures 3F and G shows that PGC-1a and HSP-72 expression were significantly

increased in heat-treated cells.

Discussion

Acute altitude exposure reduces oxygen transport leading to lower submaximal
and maximal aerobic capacity, making exercise harder (Levine et al. 2008) and
consequently impairing exercise capacity (Beidleman et al. 2003). Many traditional
(living and training at altitude) (Faulkner et al. 1967; Faulkner et al. 1968; Levine and
Stray-Gundersen 1997) and non-traditional (acute intermittent altitude exposure)
(Katayama et al. 2004; Beidleman et al. 2008) altitude training models have been
successful at preparing individuals for acute altitude sojourns. However, a disadvantage
to altitude training is limited access to high altitude terrain and/or costly equipment
needed for training purposes. The purpose of this investigation was to determine the
effects of a CES of HA on submaximal whole body exercise economy and efficiency
during acute exercise at altitude. Using a “proof of concept” model, I investigated the
effects of heat stress on C2C12 murine myocyte metabolism and changes in
mitochondrial content. The primary findings of our study were 1) whole body
submaximal economy and efficiency at 1600 m and 4350 m was not affected after 10
days of HA and 2) 24 hours of heat stress suppressed cellular metabolism, and reduced

mitochondrial uncoupling which enhanced mitochondrial efficiency, and induced

www.manaraa.com



74

mitochondrial biogenesis. Thus, | propose that while heat stress improves cellular
mitochondrial efficiency, findings from whole body metabolism are inconsistent with
cellular adaptations indicating that HA may not be an adequate CES preconditioning
model to enhance whole body economy and efficiency during acute exercise at altitude.
Prior to this investigation only two studies have examined the effects of heat
exposure on exercise capacity in hypoxia. Hiestand (Hiestand et al. 1955) first reported a
22% longer survival time-to-drowning in mice exposed to heat which they attributed to
lower oxygen requirement during swimming. Later, Heled et al. (Heled et al. 2012)
suggested that improvements in metabolism defined as a lower submaximal VO, due to
heat acclimation may be beneficial during exercise in hypoxic environments. However, a
major limitation of the Heled et al. investigation was that they did not measure expired air
during exercise, making it difficult to draw those conclusions. Here, | show that 10 days
of HA, which is confirmed by reductions in HR and T, (Table 3), does not lower exercise
economy and efficiency not only during acute exercise at 4350 m, but has little effect at a
lower altitude (1600 m) in a temperate environment. Our findings are consistent with
some (Weinman et al. 1967; Young et al. 1985) but are in contrast to what others have
reported (Sawka et al. 1983; Jooste and Strydom 1979; Shvartz et al. 1977; Eichna et al.
1950). Young et al. (Young et al. 1985) found only a 0.85% reduction in VO, during
submaximal exercise in a temperate environment after 9 days of HA, whereas, previous
examinations that reported improvements in submaximal VO, observed decreases
ranging from 4-15%. In comparison, | observed 1.7% and 2.1% reduction in VO, in the
LI and HI exercise at 1600 m, respectively, and 0.7% increase and 1.2% reduction at the

LI and HI respectively, at 4350 m. | am unclear as to the disagreement of our results with
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other reports, but since our subjects were heat acclimated as shown by reductions in HR,
T¢, RPE and perception of heat, | feel the differences are not attributed to our HA
protocol of 110 minutes/day for 10 days at 40°C at 20% RH. A possible explanation for
the observed differences in results is the different modes of exercise used during HA.
Previous studies have used step-testing or treadmills protocols, with the largest
improvements observed in step-test protocols (Shvartz et al. 1977; Senay et al. 1976).
Considering the potential learning effect of a stepping protocol, this may explain why
those authors reported reductions in VO, in their subjects. Nevertheless, reductions in
VO, after HA have also been reported in walking/running studies (Sawka et al. 1983)
using the traditional HA protocol used in this study. Since walking/running is the primary
mode of transportation in humans, there would be little learning effect, suggesting that
HA can lower metabolism independent of the mode of exercise. Heat acclimation has
also been reported to increase VO,max (Lorenzo et al. 2010; Sawka et al. 1985), which
raises the possibility that at the same given workload an individual would exercise at
lower VO,. Unfortunately, in all but one study which reported improvements in VO,max
after HA (~2 — 23% increase) (Shvartz et al. 1977), previous studies did not
measureVO,nax after HA (Sawka et al. 1983; Jooste and Strydom 1979; Eichna et al.
1950). This may indicate that given the same exercise workload, rightward shifts in
VOzmax (i.€. improvement in aerobic fitness) and not HA cause changes in exercise
economy. Since | controlled for a training effect and did not observe increases in VOzmax,
this may explain why | did not see reductions in economy.

Another potential explanation as to why I did not observe any metabolic changes

in our subjects may be due to the time decay of adaptations from HA. Previous reports
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suggest that the primary indicators of HA (reduced HR and T.) are still reduced after 12-
18 days (Pandolf et al. 1977), however, there have been no studies investigating the time
course of metabolic adaptations after HA in a temperate environment. Previous studies
(Sawka et al. 1983) that reported reductions in economy measured submaximal variables
24 hours after the last HA day. Since this current study was part of a larger study
primarily investigating the potential use of HA as a CES for acute exercise at altitude, the
submaximal exercise trials at 1600 m were conducted ~7 days after the last HA day. It is
conceivable that any effect the HA protocol may have had on submaximal economy and
efficiency could have been diminished. However, it does not explain why I did not
observe improvements in economy and efficiency at altitude, since those trials were
conducted within the first 48 hours after the last HA trial. Nevertheless, our findings
indicate that HA does not reduce whole body submaximal economy and alter metabolism
which would be beneficial at altitude. Further investigations looking into the time course
of re-induction of metabolic adaptations after HA are needed to support our findings.
There are non-metabolic factors that can also confound our findings of
submaximal exercise economy. One factor is elastic energy stored within the connective
tissue. The effect of the stretch-shortening cycle is an increase force production from the
increase in tension and release of energy within the tendons (Roberts 2002). It has been
reported that ~40 — 50% of energy production during long distance events is attributed to
elastic energy from connective tissue (Nordez et al. 2009) and loss of this elasticity from
prior static stretching has been shown to impair the first five minutes submaximal cycling
economy (Wolfe et al. 2011). Another non-metabolic factor that can affect force

production is changes muscle volume and cross-sectional area (CSA) and therefore
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pennation angle of skeletal muscle (Fukunaga et al. 2001; Aagaard et al. 2001). Aagaard
et al. reported significant increases in CSA and volume of the vastus lateralis muscle
(77.5+3.0t0 85.0 + 2.7 cm? and 1676 + 63 to 1841 + 57 cm?, respectively) and force
production (16%) after 14 weeks of resistance training with no alterations in myosin
heavy chain composition. The authors suggested that changes in pennation angle and not
alterations in ultra-structure as the cause for increase in contractile force production.
Therefore, any alterations in non-metabolic factors can potentially have a confound effect
on metabolic changes from the 10 days of HA.

Heled et al. (Heled et al. 2012) reported a significant increase in SaO, during their
maximal exercise test in hypoxia after HA. These findings are important because an
initial response of exposure to altitude is an increase in ventilatory response, which
ultimately raises SaO,. Heat acclimation has been reported to further increase ventilation
during exercise in the heat (Boden et al. 2000; Beaudin et al. 2009) which is likely
stimulated by heat stress to the hypothalamus (Boden et al. 2000). To our knowledge, no
studies have investigated the effects of ventilatory responses at altitude after HA. Our
findings do not indicate that HA alters VE in a manner that would improve SaO, during
acute exercise at altitude. This response would make sense given that changes in hypoxic
ventilatory response from altitude exposure are mediated by the chemoreceptors of the
carotid bodies (Teppema and Dahan 2010).

The secondary purpose of this study was to investigate the potential mechanism of
reduced whole economy and improved efficiency by investigating changes in cellular
metabolism in C2C12 murine myocytes exposed to 24 hours of heat. Previous

examination of heat stress (1 hour/day for five days) on C2C12 myocytes has shown the
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propensity for heat to induce molecular adaptations associated with mitochondrial
biogenesis (Liu and Brooks 2012). Our cellular experiments confirmed both the gene and
protein expression adaptations which have been previously shown (Liu and Brooks
2012), while further verifying that heat stress which I confirmed by significant increase in
HSP-72 expression leads to increased mitochondrial content within cells (Figure 3C). A
suppressed mitochondrial respiration (especially with corresponding reductions in UCP3
MRNA expression and endogenous proton leak) was an expected adaptation considering
a large amount of heat energy is released during active electron transport. This confirms
our hypothesis that heat stress reduces mitochondrial efficiency (ie mitochondria are
more efficient at using oxygen) as indicated by reduced mitochondrial metabolism with
simultaneous increase in mitochondrial content. Interestingly, heat stress stimulated the
biogenesis of mitochondria while simultaneously lowering cellular oxidative metabolism.
Our findings raise the perplexing question, why would a cell increase mitochondrial
density while concurrently decreasing mitochondrial metabolism? Our data demonstrate
that heat stress decreases UCP3 expression which has previously been shown to increase
mitochondrial reactive oxygen species (ROS) production in UCP3 knockout mice (Vidal-
Puig et al. 2000). In previous examinations, researchers have shown that cellular ROS
regulates PGC-1a. (Strobel et al. 2011; Gomez-Cabrera et al. 2008) which coordinates
heightened expression of enzymes manganese superoxide dismutase (MnSOD) and
catalase that neutralize ROS (Dam et al. 2013). | therefore speculate that heat stress
reduces UCP3 expression leading to lowered metabolism, but is accompanied by elevated
ROS production. The elevated ROS stimulates PGC-1a and increases mitochondrial

density and anti-oxidative enzymes acting as a feedback mechanism to regulate elevated
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ROS production. These cellular adaptations may help to explain why | observed lower
metabolism with elevated mitochondrial content. These findings suggest that heat-
induced muscle adaptations may be a product of cell survival in hot environments and not
necessarily to improve muscle function for exercise. It is also plausible that increased
ROS leads to malfunctioning mitochondrial respiration which may act synergistically
with heat to suppress oxidative metabolism which may explain why both basal and peak
metabolism was suppressed. At least at the cellular level, these findings raise questions as
to the potential benefits of heat stress.

Our aim was to use a cellular model to examine the potential mechanism of HA
on whole body cycling economy and efficiency. To our knowledge, | are the first to
investigate prolonged heat stress on changes in cellular metabolism and relate them to
humans. Comparisons between human skeletal muscle and C2C12 murine myocytes
indicate similar molecular responses (Chung et al. 2009; Lamon et al. 2014). The use of a
“proof of concept model” such as the one in this investigation has been previously used
(Hyldahl et al. 2010) and allows for mechanistic studies without human muscle biopsy
samples (Allen et al. 2005).

| show that while heat stress suppresses cellular metabolism, whole body
economy and efficiency are not affected by HA. Since mitochondrial respiration is the
primary source of oxygen consumption, I am unclear as to why | observed lower cellular
oxidative metabolism but this response was not seen in the whole body. Previous
researchers have reported alterations in both whole body and cellular oxygen
consumption when oxidative phosphorylation coupling was manipulated by DNP

(Schlagowski et al. 2014). However, researchers (Vidal-Puig et al. 2000) have previously
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reported that while UCP3 knockout mice had enhanced mitochondrial coupling and
reduced mitochondrial respiration, they did not observe changes in whole body oxygen
consumption at rest. They suggested that reductions UCP3 may not necessarily have an
effect on whole body VO,. Furthermore, previous examinations have reported lower
expression of UCP3 in trained individuals versus untrained individuals, however, with no
differences in P/O ratio (ATP formation per oxygen used) between the two groups
(Mogensen et al. 2006). This indicates that reductions in UCP3 would not necessarily
influence whole body VO,, which supports our findings of suppressed cellular oxidative
consumption without changes in whole body VO..

Another explanation may be the different protocol of heat stress between the
human and cell experiment. In our human experiment, | intermittently heat stressed our
subjects for two hours a day over a 10-day period, whereas, cells were heat stressed
continuously for 24 hours. It is plausible that continuous rather than intermittent heat
exposure is required as a dose-response for adaptation. Nevertheless, since reduced
economy after HA has been documented by others (Sawka et al. 1983; Shvartz et al.
1977; Senay et al. 1976), while different, the difference in the total amount of heat stress
between the cellular and human models may not fully explain our findings. It is also
possible that since our sample size (n = 8) was relatively small, changes in whole body
VO, were difficult to determine. However, our a priori power analysis which required at
least six subjects and previous studies reporting significant reductions in economy using a
range of 8-15 subjects (Sawka et al. 1983; Shvartz et al. 1977) seem to point towards an
adequate sample size. Given our results, it is possible that alterations in cellular

metabolism are not best translated to whole body changes. Further investigations using
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muscle biopsy samples from participants before and after HA may clarify these
discrepancies.

I have demonstrated that while heat stress induces cellular adaptations leading to
mitochondrial biogenesis and improved mitochondrial efficiency, these adaptations are
not translated to the whole body therefore, at this time, | am unable to definitively
promote the use of HA as a CES for enhancing cycling economy and efficiency during

acute exercise at altitude.
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CHAPTER 4

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The review manuscript entitled "Adaptations to skeletal muscle from heat stress:
A cross environmental stressor model for exercise at altitude” explores a novel idea for
the use of the cross environmental stressor (CES) of heat stress to induce skeletal muscle
adaptations that would be advantageous during acute exercise at altitude. At altitude,
impaired oxygen transport from the lungs to the muscle limits aerobic capacity,
consequently reducing exercise capacity. Previous examinations in humans who were
heat acclimated (HA) showed reduced metabolism eliciting a lower oxygen cost for a
given workload during exercise (improved economy) in a temperate environment. The
review paper is focused on previous findings in humans on the increase in economy after
HA. Further, I discuss how improved economy and efficiency are key contributors to
higher exercise capacity even when some individuals have moderate to low aerobic
capacity. It is therefore conceivable that adaptations from heat acclimation may enhance
exercise capacity during acute altitude exposure, however, the underlying mechanisms
that may cause this effect have yet to be fully elucidated. Using research findings from
cell studies, I discuss potential adaptations that occur due to heat stress. These include
heat stress-induced mitochondrial biogenesis and reduction in uncoupling protein 3
(UCP3). Previous cell studies show that heat stress alone induces PGC-1a, NRF-1 and

TFAM, and increases biogenesis of mitochondria which is a key contributor to aerobic
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capacity. Further, I speculate that UCP3, an important mitochondrial uncoupling protein
which allows for proton leakage and heat production during electron transport, is reduced
after heat stress. This adaptation would lead to improved electron transport coupling and
in turn could reduce oxygen consumption and improve mitochondrial efficiency which
may be beneficial during acute exercise at altitude.

The research manuscript entitled “The effects of ten days of heat acclimation on
submaximal exercise economy and efficiency at 1600 m and 4100 m” provides evidence
that while heat-stressed C2C12 myocytes have reduced UCP3 expression and suppressed
cellular oxidative and glycolytic metabolism indicating improved muscle efficiency,
results from our human study does not support the use of HA as a CES for acute exercise
at altitude in humans. Potential explanations for discrepancies between the human and
cell models include (1) reductions in UCP3 may not play a large role in whole body
oxygen consumption, (2) continuous rather than intermittent heat stress are required for
adaptation and (3) the relatively small sample size of our study. Further work is needed to

understand the changes in human skeletal muscle biopsy samples after HA.

Conclusions

The significant findings in this research study were (1) 10 days of heat exposure
in humans induces HA but is not accompanied by improved whole body exercise
economy, (2) in C2C12 myocytes, 24 hours of continuous heat stress induces adaptations
that leads to biogenesis of mitochondria and reduced UCP3 expression causing

suppressed cellular metabolism, (3) changes in cellular metabolism are not consistent
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with changes in the whole body metabolism, and (4) the use of HA as a cross-
environmental stressor is not beneficial for acute exercise at altitude.

Recommendations

A measurement that would have further informed this investigation is the analysis
of skeletal muscle biopsy samples from subjects before and after HA to directly examine
the adaptations of skeletal muscle. It is recommended for future studies that mitochondria
be harvested from skeletal muscle to conduct an ex vivo metabolism study. Specifically,
this would answer whether alterations in cellular metabolism after HA are apparent in the
mitochondria sampled from human muscle tissue. These measurement would clarify if
the use of HA is a plausible CES model for exercise at high altitudes.

Another further recommendation would be to recruit sea-level native individuals
and repeat the study. Previous examinations on the effects of HA on muscle metabolism
were conducted at sea level. Due to our geographical location, all of our subjects resided
at 1600 m. While the elevation is relatively low, physiological responses to 1600 m
would be relatively quick. However, I am unsure whether this elevation may have had

confounding effects on how individuals may respond to the heat.
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Appendix A

The University of New Mexico Health Sciences Center
Consent to Participate in Research

The effect of heat acclimation on exercise capaciiy during acute altitude exposure (13,451 fi)
04/03/14

Purpose and General Information

You are being asked 1o participate m a research study that is being donz by Dr. Chnstine Mermier, PhDy,
who 15 the Poncipal Tuvestigator, and her associates  This research is being done to evaluate how heat
exposure will affect exercise performance dunng shor-term hugh altitode exposure. You are being asked
to participate because you are a male endurance athlete Approxmately 25 people will take part m thus
study at the University of New Mexico.

This form will explam the study to you. including the possible risks as well as the possible benefits of
parficipating.  This i€ $o you can make an informed choice about whether or not to participate in this
study. Please read this Consent Form carefnlly. Ask the investioators or smdy staff to'explain any words or
mformation that you do not clearly undersiand,

What will happen if I participate? _

The recruitment process will be standardized. However, since UNM students and staff may be mterested
m the study, we will make sure that the recritment process will not be coercive of thus apphies fo you. For
example, the PI who 1s a faculty member, will not be avolved with recruttment of students: A private
room will be used for all interactions between vou and study personnel. If vou agree to be mn this study,
vou will be asked to read and sign thus Consent Form After vou sign the Consent Form the followme
thmgs will happen” You will report to the Exercise Physiology lab and/or the High Alntude Chamber on
23 different occasions. You will not be able o perform any stremuous lower-body exercise or consume
alcohol or caffeine 24 hours prior to all visits. You will also be asked not to travel to an altitide greater
than that of Albuquerque, WM (5000-6000 f) or be exposed to a Jacurzi or sauna dunng participation in
the study.

Day One:

1) ¥ou will be asked to read and sign the combuned consentHIPAA form, and fill out the health hastory
questionnarre 1f vou're interested m participating 1 the study.  If you do not have any conditions,
mchidme elevated resting blood pressure. wihich would make it unsafe for you to pamecipate; then you
will be invited to continue with study measurements.

2) The researchers will measure vour height, weight, resting blood pressuse. and percent body fat with
skinfold calipers. We will measure skinfolds on your chest. abdemen and thigh

Tmal 1

We will measure your maximal oxyeen uptake (VO2max). This can also be thouglt of as your matimal
aerobie capacity or fitness level You wall perform this test at 5.250 £ (Albuquerque's altitude) The
purpose of the VO2max test at Albuquerque’s altitude (5250 ) s to determune if you fit our cateria for
aerobic capacity. If testme shows that you do net fit our entenia. your participation m the study will not

HRPO & 13509 Page 1ol g Version: 04032014
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www.manharaa.com




93

continme. However, you will be given the results of your test This VO2max test will also be used to
determine your workloads for subsequent submaximal exercise tests at this altitude.

To determuns your VO2Zmax you will perform a mazimal graded exercise test on a breyele usimg a
protocel that wvelves easy cycling (70 Watts) for 2 tun, then the woikload will get harder (by 35 Watts
nﬁynnnmc]mnlymcannniﬂngﬂmmnmmamdmﬂeofﬁﬂrpmorugdsmhrdﬁryuuto
continue. Dunng the exercise test, you are required 1o wear a nose clip and breathe through a mouthpiece
hooked up to a hose so that all your expired arr can be collected and analyzed contimously using a
measurement systeny You will also have a heart rate transnutier strap around your chest This test will
last between € and 12 minntes. The fotal time commutment for fius first visit wall be about one hour

Tnals 2 and 3

You will perform two 10 mile cyching time-tnials (TT) at 5250 ft We want to determune how quuckly you
catt cycle for 10 mmles without resting. These two tests will be separated by at Ieast 24 hrs. You wall
complete an sasy 10 mun warnrup (75 Watts) followed by a 10 nule self-paced TT. 'We will show vou
how te select a ngher gear 1f you want to attam lugher speeds. Heart rate will be continuously momtored,
while oxvezen saturation (Sa02), how much oxygen is saturated m your blood, and perception of effort
(RPE), how hard you feel you are working will be measured every one mile as well as at the end of the
TT. Ymmﬂbemfmmdnfﬂledmhnnccnvﬂedatﬂmﬁnﬂemmkaﬂnﬂyﬁmleﬂmﬁﬂr
however. you will not be given any feedback regarding your bieart rate, power output. or performance
time. The nme this test will take will vary depending on your fimess level and power output 1t should
take approximately 30-40 munutes The total time for each of these tests will be one to cne and a half
hours.

Tnal 4

Your nuxumal oxvgen uptake (VO2max) will be measured while you are at lugh altitude (13450 8l m a
special chamber A medical doctor will be present dunng the maxumal exercise tests. The chamber
simulates gh altimde by changing the air pressure, with lower pressure smmlatme ascent to higher
altitude. The chamber 15 sealed to maintam pressure, but fresh air is pumped in from the outside: It takes
about one mimute to "ascend” or "descend” 1000 fi of elevanon. To determune your VO2max. you will
perform 3 maximal graded exercise test on a bicycle exactly as you did at Albuquerque's altitode. This
melndes cycling with the mouthpiece and nose clip unnl your cadence drops below 60 rpm_ The exercise
test will take between 8 and 12 munutes 1o complete. There will be several people on the research team
the chamber with you You will stay m the high altitude chamber only long enough to ascend to 13:450
fi complete the fesi. and descend back to 5,250 ft The total zme for this wasit will be 45 nunutes o one

heur.

Tnals 5 and 6:

We will defermine your submaximal (less than your maximal exercise effort) exercise economy and
efficiency, which are common factors that are related to sports performance, Yuuwﬂlpaﬁﬂn;;‘[}mmof_
submaximal exercise on a bicycle at both r‘?.Si'a‘lﬂ.‘(_a"«klI:viuvr;lji.'.'l'l:;uuc:;:l]]:ltl.'u:]lf:}zn:ui 13.450 & One exercise
irial will be performed at 5.250 fi and cne exercise tnal will be performed at 13.450 fi, These two tests
will be sepamated by at least 24 hrs. You will exercise for 10 min at approxtmately 50% of your peak
power output aclieved dunng the maximal exefcise fest at the respectve altitude: You will be asked to
matntain a cadence of 80 rpm. In order to mamtam the necessary cadence, you will be prowvided wisual
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feedback of the digital tachometer on the breycle Five mumites mto each 10 mun bout, you will be set up
to breathe through a mouthpiece and nose clip where your expired air will be collected and analyzed
contimiously using a measurement system. For your comfort, the mouthpiece will be removed afier each
data collection time-frame  You can choose fo dnnk water whensver you do not have the mouthpiece in
mmmw@mwmm;mﬂmﬂmwmmﬁm “ascent” and
"descent” of the chamber will take approximately 10 nunutes each way The total time required for each
wistt will be 43 minutes to one hour.

Tral 7

A hear tolerance test (HTT) will be performed at 5.250 fi to determune how well you will be able to
tolerate exercismg in a hot room The HTT will be performed 1 a heat chamber at 104°F, You wall
exercise on a bicycle at 50% of vour 5,250 ft VO2Zmax (this 15 considered an sasy to moderate exercise
intensity) for 45 min Prior to the HTT and after urinating into a container, you will enter a private room
to measure your nude body weight on an electronic scale Your urme sample will be collected 10
determune your hydration status. If you are delvdrated. you wall be asked to consume 16 ounces (500 mL)
of water, followed 30 nun later by a second assessment of hydration You will then be mstructed how to
self-insert a rectal thermistor ~4 mnches (10 em) past your anal sphincter for measurement of your core
body temperature durng the tmal Slan thernustors will also be taped on your chest amy and thigh to
measure skin temperature throughout the HTT. Heart rate (HR) will be assessed continuously dunng the
HTT usmng a heart rate strap that vou wear around your chest. The HTT will be termmnated if vou: 1)
request to stop. 2) are unable to sustmn the predetermmed exercise workload, or 3) attan a core
temperature of greater than or equal to 104°F This tral will take approxmately one to one and half
hours.

Hyour core temperature reaches 104°F or you do not feel well you wall be immediately removed
from the heat and you will be asked to lie down with your fest elevated.  One of your hands wall
be placed 1 a cooler filled with 1ce water. Towels will be dipped in 1ce water and applied to your
neck, face, anms, and legs. A fan wall be directed across your chest and will be run at top speed.
Elevating your feet wall increase blood return to the central circulation, reducing your heart rate.
The combination of cold water and cirenlating arr wall rapidly reduce yoor core temperature,
winch will also reduce your heart rate: Cold water application m combmation with fanming 15 the
gold standard of care for combating heat tllness. If your core temperature does not start to retum to
normal values or signs and symptoms of heat 1llness are not alleviated, you will be escorted to the
Student Health Center or thie UNM Emerzency room for firther medical treatment. Our doctor
will follow-up with you to see how you are doing.

A final unne sample wall be measured following completion of the HTT The same procedures as
described above wll be followed 1 order fo assure that you're properdy hydrated prior to leaving the
laboratory. If you are dehydrated, you will be asked to stay in the lab and drink water natil you are
hydrated.

Tnals 8-17:
You will be asked to complete 10 consecutive days of heat acclmation (HA) wiuch consists of cyelmg in
a bot room (heat chamber) at 3 temperature of 104°F. Acclimation to the heat will be induced using 3 HA
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protocol, which consists of easy to moderate eycling at 50% of your 5250 f VO2max for two 50 mun
bouts with 10 min of seated rest between each bout. Your core body temperature will be measured via
self-nsertion of the rectal thermustor. Your heart rate will be momtored continuously and recorded every
five munutes. Yeu will be provaded with room temperature ‘water and allowed to dook water freely
throughout the tnals. We wall strongly encourage vou to donk water every 10 mmn dunng all exercise
bouts. If you need to unnate you will do 5o m a disposable unne contamer in order for us to measure your
umne output. Before and afier each HA session. your mude body weight will be measured m a private
mom and 3 unne sample will be collected 1o determine your hydration status. If you're not properly
Irydrated before and after exercise m the heat you will be asked to consume 500 mL of water followed 30
mun later by a second assessment of hydration. Weight unne output and water consumed will be nsed to
calculate your sweat rate. The HA protocol will be terminated 1f you: 1) complete the 100 nun of cycling,
1) aftain a core femperafture greater than of equal to 104°F or. 3) request to step. If you're mable to
complete the entire 100 min for any given HA trial. your completed tume will be recorded, and you will be
asked to contnue reportng to the laberatory as scheduled mn order to finish the entre 10 days of HA

On day one and day 10 of the HA protocol, two teaspoons (10 mL) of blood (with a total of 4 teaspoons
or 20 mL for the entire study) will be drawn from 2 vem m your arm for determumation of hematocnt
(packed red blood cells) and hemoplobin (carmes oxygen i your blood). This will be done to calculate
changes in plasma volume (fluid portion of your blood). All blood draws and blood analysis will be
performed in the Exercise Physiology Lab at UNM. All of your de-identified blood samples wall be stored
in a freezer in & locked room (#B04) within the Exercise Physiology Facility. These samples will only be
accessible to the PI and co-investigators. All blood samples will be destroved after publication of the
manuscripi(s), no meore than two vears from completion of data collection Your hemoslobin and
hematocnt values will be given to you if you are interested.

Trals 18-23;

Followmg completion of the heat acchmaton protocol, vou will complete the followmg tests separated by
at least 24 hrs® cycling time-trial at 13 450 f, VO2Zmax at 13 450 ft, 20 min submaximal cycling at 50%
VO2max at 13 450 fi. 20 min submaximal eveling at 50% VO2max at 5,250 fi, VO2Zmax at 'i,l\ﬂft,mﬂ;
post-heat folerance test at 5.250 fi The final heat tolerance test will be performed to venfy that you're
leat acclimated All of the tests will follow the same procedures as described above for the pre-HA
testing. The time comminment for each of these six mials will be less than one hour, with the exception of
the heat tolerance test, which could take up to one and half hours,

Participation in this study will take a total of 48 hours over a period of 3-4 weeks.

What ave the possible risks or discomforts of being in this study?
Every effort will be made to protect the information you give us. However, there 15 a small nsk of loss of
prvacy and/or confidentiality. All exercise sessions will be conducted by exercise physiologists who are
trained in recogmzing tiie signs and symptoms that require temunation of exercise. All study personne]
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are CPR/AED cerfified, as well as trained m the laboratory’s emergency protocols. Risks associated with
maximal exercise testing nay mchide the following bref feelings of nausea, Lightheadedness, muscle
cramps, or dizziness during or after completion of exercise. According to the American College of Sports
Medicine. the nsk of a cardiac event in normal healthy individuals dunng a maximal exercise test is
manimal, 0.0006% (6 w 10,000). Because you're an endurance traned athlete you're accustomed to
exercismg at a high imtensity for prolonged periods of time, the risk wall be less.

Exercismg at a lugher altimde and exercising m a hot room may also make you have bref feelings of

nausea. lightheadednsss, mmscle cramps or dizziness. Exercising i a hot room may make vou feel tired
:lndnvﬂheated,amimﬂclsmgnthj.ghalumdfmaya]snmyuum&elfnhguedl}unngallafﬂlehlgh
altstude trials we will be monitoring any signs or symptoms of acute motntam sickness using a validated
questionnane. Symptoms of acute mountam sickness include nausea, headache, lngh altitude pulmonary
and cerebral edema. However, that these symproms do not develop m healthy peopie until at feast 6 hrs
after ascent. even during heavy exercise. You will only be at peak altitude for approximately one hour.
therefore. we do not foresee the development of acute mountam sickness A medical doetor will be
present duning all maximal exercise tests at high altitude.

Drawmg bloed may cause temporary pain and discomfort from the needle shck. occasional bnusing,
sweating, feeline famt or hghtheaded, and o fare cases, mfection You may feel embarrassed or
uncomfortable placiie the rectal probe. however the rectal probe does not pose any additienal nsk to you
This procedure 1s necessary m order to momtor your core temperature for safety reasons This
measurement allows us to make sure that your temperature 15 not getting high snough to put you at sk
hmmewmmhmﬂmmkﬂhmmmdeﬁm&macmtmﬁmofm
than 104°F that can cause disorientation, dizziness. headache, nausea, and vomiting. Heat stroke/heat
exhanstion signs and symptoms as described above occur during prolonged exercise m the heat when your
body is unable to properly cool itself by sweatmg  The nsk of death and/or argan damage due to heat
illness 15 not well documented.  In lugh school athletes, non-fatal heat 1llness ocoumed 1.6 per 100,000
athletic exposures. Whule heat stroke/heat exhanstion 1s rare when bedy core temperature 1s kept below
104 degrees F. there 15 a small possibibty of unknown nsks when exercising in the heat below this
température. During the heat tolerance test and heat acchmation tmals we will récord vour core
temperature and sensation of heat every five ounutes and will continuously momtoning your core
temperature and how vou feel In that tme, if a core temperature above 104°F is either observed or
recorded we will mimmediately stop the exercive before vou have any sions or symptoms of heat
stroke/heat exhanstion. Thus, at any pomt durmg the heat tnals we will femminate exercise if you achieve a
core temperature of 104°F or if you are not feeling well The necessary procedures as described above-
will be taken te cool and lowser your core temperature: These procedures would be done to lower your
core temperature and help you feel better:
You also may be uncomfortable having to reframn from having any caffesne or eating any food before
each visit. This study requires a lot of your tume, and the tinuns of each test 1s important, therefore vou
made feel inconvemenced by the yequired schedule There are nsks of stress, emotional -distress,
mconvemence and possible loss of prvacy and confidentiality associated with participatmg m a research
study.

How will my information be kept confidential?
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Your name and other identifying mformation will be maintamed m locked files, available ouly te
authorized members of the research team. for the duration of the study. For any information entered mto
a computer, the only identifier wall be 2 unique study identification (ID) mumber Your health
questionnaire. informed consent, and HIPAA will be completed in 3 private room. We will keep a key that
links you with your ID number, but that link wall be kept 1n a locked filing cabinet with access only to the
study team The link wall be destroyed after we publish the study results. In no mstance will your name
be used for any published or presented acceunts of the results. All tests will be conducted i pnvate arsas
m the Exercise Physiology lab located in Johnson Center or the High Altiude Chamber located in Carhisle
Gym: The research team will not access any outside informahon. such as your medical records. Only the
paperwork for the current study will be wsed  Any personal 1dentifymg imformation and any record
Imibng that mformation to study ID numbers will be destroved when the study 15 completed. Information
resulting from this study will be nsed for research purposes and may be published: however, you will not
be identified by name in any publications Urine samples will be destroyed mmmediately after vour
liydration stamus is determined  All of your de-identified (sulyeet # only) blood samples will be stored m a
freezer in a locked room (Room # B04, Johnson Center) only accessible o the PI and co-investigators. All
de-identified samples will be destroyed after publicanon of the munuscript{s), no more than two years
from the completion of data collection

Information from vour participation 1 this study may be reviewed by federal and state regulatory
agenicies; and by the UNM Human Ressarch Review Commnuttee (HRRC) wluch provides regulatery and
ethical oversight of human research There may be times when we are required by law to share your

What are the benefits to being in this study?

There may of may not be direct benefit to you from being in this study. However, your paricipation may
hielp find out how individuals respond to exercise @1 high alumde following heat exposwe. Following
completion of the study you will be mformed of your results from all cycling tests. The results from the
maximal exercise tests and time trials may be beneficial for you as you can use the information for
determuning an optimal exercise mtensity and duration of exercise. This mformation can allow you to
tran more effectively and to potentially become more successful i cvelne competitions. We will mform
you about all of your blood test results, both pre- and post-testing. Our phvsictan will talk wath vou if any
of your blood tests are not withun the nornial range.

What ather choices do I have if T don't participate?
Taking part in this study 1s voluntary so you can choose not fo parficipate

What are the costs of taking part in this stady?
The primary cost for partcipating m this study 15 vour time.  you park on or around the University
campus you will be responsible for all parlong fees.

Will T be paid for taking part in this study?
For your ttme and mmconvemence you will be paid in the follovwing amounts with three VISA mift cards:
$20 at the completion of all pre-testmg: $50 afier completion of the heat acchmation: $80 when all testing
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1s complete for a total of $150. The last day of your participation, you will be given the last ($80) gift
card.

‘What will happen if I am injured or become sick because I took part in this study?
If you are-myured or become sick as a result of this study, UNMHSC will provide vou with emergency
treatment. at your cost. '

No commitment i made by the University of New Mexico Health Sciences Center (UNMHSC) to
provide free medical care or money for injuries to participants in this study.

In the event that you have an imjury or illness that is caused by your participation m this study,

reimbursement for all related costs of care wall be sought from your insurer, managed care plan. or other

benefits program. If you do not have insurance, you may be responsible for these costs. You will also be
responsible for any associated co-payments or deductibles requured by your msurance:

It 15 important for you to tell the mvestigator unmediately if you have been wmyured or become sick
because of takmeg part m this study. If you have any questions about these 1ssues. or believe that you have
been treated carelessly m the study, please contact the Human Research Review Commuttes (HRRC) at
the (505) 272-1129 for more information.

How will I know if you learn something new that may change my mind about parficipating?
You wall be mformed of any sigmificant new findings that become available during the cowrse of the
altematives fo participation that might change your mind about participating.

Can I stop being in the study once I begin?
Yes. You can withdraw from tlus study at any tme writhout affecting vour educanon or employment at
the University of New Memxco.

The mvestizators have the right to end your participation in this study if they determine that vou no longer
qualify to take part. if you do not follow smudy procedures, or if 1t is m your best interest or the study’s
best mterest to stop your parficipation.

HIPAA Authorization for Use and Disclosure of Your Protected Health Information (HIPAA)
As part of this study, we will be collecthing health information about vou . This mmformanion is “protected”
because 1t 15 identifiable or “hnked” to you.

Protected Health Information (PHI)

By signitig this Consent Document, you are allowing the mvestigators and other authonized personmiel to
useyumpmtmtedhﬂhhmﬂxmaﬂmfm:ﬁepmpmesnfdmsmdy This mformtion may include:
heighit, weight, age, percent body fat, blood pressure, vour self-reported medical & exercise history,
cycling exercise test results, heart mate. oxygen saturation (Sa02). rating of percerved exertion (RPE),
volume of oxygen consumption (VOZ2), skin temperature. core femperature, respiratory exchange ratio
(RER), thermal sensanon, Lake Lomse acute mountain sickness questionnare, and subsect questionnaire
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form (exercise and diet log). We will also collect your unne to assess hydsation and blood for the
measurement of hemoglobin and hemarocrit

In addition 1o researchers and staff at UNMHSC and other groups listed i flns form, there 15 a chance that
your health mformation nay be shared (re-disclosed) outside of the research sthudy and no longer be
protected by federal prvacy laws. Examples of this inchide disclosures for law enforcement, judicial
proceeding. health oversight actrvities and public health measures.

Right to Withdraw Your Authorization

Your anthonzation for the use and disclosure of vour health information for this study shall not expire
unless yvou cancel this authonzation  Your health mformation wall be used as long as it 1= needed
for this study. However. you may withdraw vour authenzaton at any tume provided you notify the UNM
mvestigators m wnting To do tlus, please send letter unotifyms them of your wvathdrawal to:

MSC (4 2610
1 University of New Mexico
Albuquerque New Mexico 87131

Please be aware that the research team will not be required to destroy or retneve any of your health
information that has already been used or shared before vonr withdrawal 1s received.

Refusal to Sign
Ifyuuchmsemtamyﬁmmnﬁmfmmﬂamhmmmfmth:us& of your PHIL you will not
be allowed to take part in the research study.

‘What if T have guestions or complaints about this study?

If you have any @emmmmmmm:tm&mzbommezwmhm Christine
Mermuer, PhD. or her associates will be glad to answer them at 505-277-2658 Monday-Fruday from 8:00
am to 5:00 pm by phone: Tf you would like fo speak with someone other than the research team. you may
call the Human Research Review Commuttee (HRRC) at (505) 272-1129. The HRRC s a group of
people from UNMHSC and the community who provide mdependent oversight of safety and ethical
1s5ues related to research mvolving human participants.

‘What are my rights as a research pariicipant?

Ifynnhmqmshuﬁsﬁ:gmﬂmgynmnghisas a research participant, you may call the Human Research
Prma:hms Dﬁc:(HRPG}a (505) 272-1129 or visit the HRPO wehsite at
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Consent and Authorization

You are making a decision whether to participate m this study. Your signature below mdicates that you
read the mformation provided (or the information was read to you). By signing this Consent Form, you
are not warving any of your legal rights as a research participant

1 have had an opportunity to ask questions and all questions have been answered to my sattsfaction By
sigming thus Consent Form. I agree to participate i this study and give pesmmssion for my health
mformation to be used or disclosed as described i this Consent Form. A copy of tius Consent Form wall

be provided to me.

Name of Adult Participant (pnnt) ‘Sionature of Adult Participant Date

1 have explained the research to the parmticipant and answered all of hus questions. T believe that he
understands the mformation 1 this consent form and freely consents to participate

/

Name of Research Team Member Sig_tmm.ﬂmemd:TmNﬁmhﬂ' Date
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WELL TRAINED CYCLISTS needed for research:

The effects of 10 day heat acclimation on exercise

capacity at altitude
HRPO# 13-599

The purpose of this study is to investigate the effects of 10 days of exercising in the heat on an
individual’s ability to exercise at altitude. Total time for laboratory visits Is about 48 hours over a
5 week perlod. As-a participant in this study you will receive results of your ventilatory threshold,
maximal oxygen uptake (VO.i..), and average power output during a 10 mile cycling time-trial
which may be beneficial for exercise trairing purposes. In addition, study participants will be paid
up-to $150 for their time.

Selection criteria include:
= Male well tralned cyclists
* 20 to 44 years of age
* free of cardiovascular disease, acute illness, and lower body injury
* no prior heat injury (such as heat stroke and heat exhaustion)
* residing in.an elevation of approximately 5,000 ft {Albuquerque)

If your are interested in p‘ﬂrﬁa‘paﬁng, please contact:

-OR-
Ailish White Roy Salgado
Health, Exercise, and Sports Sciences Health, Exercise, and Sports Sciences
ailish15@unm.edu demano@unm.edu
760-212-6486 707-580-4076
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Appendix C

HEALTH HISTORY QUESTIONNAIRE (RESEARCH ONLY H/215)

Subject # Date  /
Phane#: howe call
DateofBith /[  Age  Gender Ethnictty Plhione (W)

Primary health care provider and health msnmance
(Ol fer informationemergency contacr)

Person 1o contact in case of emergency: Name phone #

A T P T T R R
MEDICAL HISTORY

Selfreported: Height Weght

Phvsical myures:

Limnstations

Have you ever bad any of the following cardiovascular problems? Please check all that apply.

Heart attackMyocardial Infarchos ‘Heart surgery Valve problems:
Chest paw or pressure Swollen anldes Dizziness:
Aprhythmias Balpitations ‘Heart nmrmur Shortuess of breath
Congestive heart failpre S

Have you ever hiad any of the following? Please check all that apply.
Hepatitic HIV Stroke Cancer (specify tvpe}
Rheumatic fever High blood pretsmie Thyrond problems .
Kidnev/liver disease Obesty Tatal cholesterol =200 mg/dl
Disbete: (specify fype) Asthma HDL chelestersl 35 me/dl
Emphysema ' 10T cholesterel =135 me'dl

Tryzyleerides 150 me'dl
Have von ever suffered from heatstmole or heat exhansnon? Y N
If ves. please explain

Do immediate blood relatives (brological parents & siblings only) have any of the conditions listed above?
If ves. list the problem. and fanmly member age at diagnosis.

Is your mother living? ¥ N Apeatdeath Cause

Is your father biving? Y N Ageatdeath Cause

Do you currently have any condition not listed that may mfluence fest results” ¥ N
Detanls

Indicate level of your overall health Excellent Good  Fair Poor  Areyou taking any

medications, vitamins or dietary supplements now? Y N
if yes, what are they?
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Do vou have allergzes to any medications? If ves what are they?
Arevouallerme to latex? Y N
Have vou been seen by a health care provider in the pastvear? Y N

Have vou had a prior maximal graded exercisetest? ¥ N Ifyves when? Whiat
were the resuls? '

Have you ever expenenced any adverse effects during or after exercase (fanting. vomuting shock
palpitations, hiyperventilation)? ¥ N If ves. efaborate.

(R R R R R R R R R R R R S R A R R R RN ]
LIFESTYLE FACTORS
Do vou now or have vou everused fobacco? ¥ N Ifves: type
How lons? Quantity  /day Years since quitting
How often do vou drmnk the followmg?
Caffemated coffee, tea. or soda oz/day  Hard hiquor oziwk  Wine oz'week
Besr oz'wk
Indicate vour cumrent level of emotional stress. Hish =~ Moderate . Low_
(AR R R R R R R R R R R R R R R R R R R R R R R R R R A R R R R R R R R SRR RN
PHYSICAL ACTIVITY EXERCISE

Physical Activity
Mimutes/Day (Weakdmys)  Minutes/Day (TFeakends)

/I average | -average

Do you tram in any acavity (eg jogzme. cveling. swimming. weight-hifting)? Y N

How well tramed are you?

Have your participated n cycling exercise/traming for the last year Y N

If ves, briefly descobe vour tranung

Vigorous Exercise (=30 Minute sessions)
Munutesthours a week

LA AR R R R A AR R R R R A A R A AR R R A R R R A R N A A AL
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Appendix D

Verification of Subject Compliance to Study Guidelines

My medical status has changed recently. yes no

If your status has changed, please list information here.

I recently used a hot tub, sauna or hot room in the past 24 hrs. yes no

If “yes,’ briefly describe the temperature and duration of exposure.

I recently went to an altitude >Albuquerque (1600 m) in the past 24 hrs. yes no

I have completed strenuous lower-body exercise in the previous 24-48 hrs. yes _ no

I am currently sick. yes _ no

I have consumed coffee AND/OR alcohol in the previous 24 hrs. yes __ no
I have fasted for at least 12 hrs. yes
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Please record here the amount of food and the volume of fluid ingested in the last 24

Breakfast:

Lunch:

Dinner:

Snacks:

Please describe your training within the last 24 hrs including intensity/duration/frequency
of physical activity. Keep in mind that this must be MAINTENANCE TRAINING.
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Appendix E
Subject: Date:
Trial #: 1600 m 4100 m
Age:
Hetgi: 3 Site SEF:
Pre Weight
Resting BP:
Sum:
Protocol: Peak Power:
Time Workload HR Saln RPE Comments
Rest 0
1 70
2 105
3 140
4 173
5 210
0 245
7 280
b 315
9 350
10 385
11 420
12 355
13 490
I4 525
Kl 50
R2 50
R3 50
Post Weight Test tume:
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Appendix F

Submaximal Exercise

Subject 5: Date:
Trial 5: 1600 m 4100 m pre post
Age: ¥r

Pre Weight: kg

Resting BP: mmHg

Protocol: Peak Power Output: Watts
Time (min) | Workload | HR (bpm) $a02 (%) VO, (L/min) | VO2 (mL’kg/min) RER RPE
Time (min) Worklead | HR (bpm) $a02 (%) VO: (L/min) VO2 (mL/kg/min) RER RPE

Post Weight: kg
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Appendix G

Heat Tolerance Test

Subject #: Date:
Trial # Pre Past
Hydmanon: afmL
Nuds Weight: kg
Resnng BP: mmHz Hydmanon: gfml (Re-teat)

Workload: Watts

—
Thermal

Time (min) HE (bpm) Trec (“Cy | Tehest (°C) | Tarm (5T} | TThigh{*C) RFE ; X
Sensation

Post Weight: ko

Comments:
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Appendix H

Heat Acclimation

Subjeci 5: Diate:
HA Trial =
Hydration: gml
Pre Weizht ke Hydianon: g'ml (Retest)
Resimg BE: mmHg

Hb: 1) 2) 3) a/dL
Workload: Watts Het 1} 3 3 %

Relative
Humidity | Comments
(%o)

Thermal |Room Temp

Ti HR (bpm)| Trec (°C)| RPE
ime (bpm)|  lrec (°C) Sensation (")

20

Recovery
Recovery
Recovery
Recovery 4

I [ o [ e

Post Wealit, ko
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Appendix |

Heat Acclimation

Subject = Date:
Trial 7
Hydeation (pre): past
Pre Weight
Resting BF: Hix: Het;

Workload:

Thermal | Room | Relaave
Time HE Trec REPE Sensation | Temp | humdity | Comments

Best

2

50

5.rest

10 rest

1-4}

15

5.0

25

30

335

40

15

=0

Recovery |

Recovery 2

Recoverv 3

Recovery 4

Post Weyght
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Appendix J
A g0, B g0,
5 3
S Q 8]
> 70+ > 704 -
E E
g g
o y o i
g * - 5 g”
60 60
& D

70- '/.

;\

o} o
: %. :
S —
> 60 >
5 § 04
o o —a
w 504 11}
50 N
Qs,? Q‘y Q?@ &
e & &
Q¢ Q° Q‘o Q°

Supplemental Figure 1 (A) Submaximal exercise economy pre and post HA at 1600 m during L1
exercise (B) Submaximal exercise economy pre and post HA at 1600 m during HI exercise (C)
Submaximal exercise economy pre and post HA at 4350 during L1 exercise (D) Submaximal exercise

economy pre and post HA at 4350 during HI exercise
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Appendix K
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Supplemental Figure 2 (A) Submaximal oxygen consumption pre and post HA at 1600 m during LI
exercise (B) Submaximal oxygen consumption pre and post HA at 1600 m during HI exercise (C)

Submaximal oxygen consumption pre and post HA at 4350 during LI exercise (D) Submaximal

oxygen consumption pre and post HA at 4350 during HI exercise

www.manharaa.com




